Меню
Главная
Авторизация/Регистрация
 
Главная arrow Психология arrow Психология труда

Ранговая корреляция Спирмена

Ранговая корреляция Спирмена (корреляция рангов). Ранговая корреляция Спирмена - самый простой способ определения степени связи между факторами. Название метода свидетельствует о том, что связь определяют между рангами, то есть рядами полученных количественных значений, ранжированных в порядке убывания или возрастания. Надо иметь в виду, что, во-первых, ранговое корреляцию Не рекомендуется проводить, если связь пар меньше четырех и больше двадцати; во-вторых, ранговая корреляция позволяет определять связь и в другом случае, если значение имеют полуколичественный характер, то есть не имеют числового выражения, отражают четкий порядок следования этих величин; в-третьих, ранговое корреляцию целесообразно применять в тех случаях, когда достаточно получить приблизительные данные. Пример расчета коэффициента ранговой корреляции для определения вопрос: замеряют вопросник X и Y подобные личностные качества испытуемых. С помощью двух вопросников (X и Y), которые требуют альтернативных ответов "да" или "нет", получили первичные результаты - ответы 15 испытуемых (N = 10). Результаты подали в виде суммы утвердительных ответов отдельно для вопросника X и для вопросника В. Эти результаты сведены в табл. 5.19.

Таблица 5.19. Табулирование первичных результатов для расчета коэффициента ранговой корреляции по Спирмену (р) *

Табулирование первичных результатов для расчета коефици¬ента ранговой корреляции по Спирмену (р)

Анализ сводной корреляционной матрицы. Метод корреляционных плеяд.

Пример. В табл. 6.18 приведены интерпретации одиннадцати переменных, которые тестируют по методике Векслера. Данные получили на однородной выборке в возрасте от 18 до 25 лет (n = 800).

Перед расслаиванием корреляционную матрицу целесообразно ранжировать. Для этого в исходной матрицы вычисляют средние значения коэффициентов корреляции каждой переменной со всеми остальными.

Затем по табл. 5.20 [24, с. 20] определяют допустимые уровни расслоение корреляционной матрицы при заданных доверительной вероятности 0,95 и n - количества

Таблица 6.20. Восходящая корреляционная матрица

Переменные 1 2 3 4 бы 0 7 8 0 10 11 M (rij) Ранг
1 1 0,637 0,488 0,623 0,282 0,647 0,371 0,485 0,371 0,365 0,336 0,454 1
2 1 0,810 0,557 0,291 0,508 0,173 0,486 0,371 0,273 0,273 0,363 4
3 1 0,346 0,291 0,406 0,360 0,818 0,346 0,291 0,282 0,336 7
4 1 0,273 0,572 0,318 0,442 0,310 0,318 0,291 0,414 3
5 1 0,354 0,254 0,216 0,236 0,207 0,149 0,264 11
6 1 0,365 0,405 0,336 0,345 0,282 0,430 2
7 1 0,310 0,388 0,264 0,266 0,310 9
8 1 0,897 0,363 0,388 0,363 5
9 1 0,388 0,430 0,846 6
10 1 0,336 0,310 8
11 1 0,300 10

Обозначения: 1 - общая осведомленность; 2 - понятийнисть; 3 - внимательность; 4 - вдатнисть К обобщения; б - непосредственное запоминание (на цифрах) 6 - уровень освоения родном языке; 7 - скорость овладения сенсомоторном навыками (кодирование символами) 8 - наблюдательность; 9 - комбинаторные способности (к анализу и синтезу) 10 - способность к организации частей в осмысленное целое; 11 - способность к эвристического синтеза; M (rij) - среднее значение коэффициентов корреляции переменной с остальными переменных наблюдений (в нашем случае n = 800): r (0) - значение нулевой "Рассекая" плоскости - минимальная значимая абсолютная величина коэффициента корреляции (n - 120, r (0) = 0,236; n = 40, r (0) = 0,407) | Δr | - допустимый шаг расслоения (n = 40, | Δr | = 0,558) в - допустимое количество уровней расслоения (n = 40, s = 1 ; n = 120, s = 2); r (1), r (2), ..., r (9) - абсолютное значение секущей плоскости (n = 40, r (1) = 0,965).

Для n = 800 находим значение гтип и границ ги после чего Расслаивающая ранжированы корреляционную матрицу, выделяя корреляционные плеяды внутри слоев, или отделяем части корреляционной матрицы, вырисовывая объединения корреляционных плеяд для вышележащих слоев (рис. 5.5).

Содержательный анализ полученных плеяд выходит за пределы математической статистики. Надо отметить два формальные показатели, которые помогают при содержательной интерпретации плеяд. Одним существенным показателем служит степень вершины, то есть количество ребер, примыкающих к вершине. Переменная с наибольшим количеством ребер является "ядром" плеяды и ее можно рассматривать как индикатор остальных переменных этой плеяды. Другой существенный показатель - плотность связи. Переменная может иметь меньше связей в одной плеяде, но теснее, и больше связей в другой плеяде, однако менее тесных.

Предсказания и оценки. Уравнение у = b1x + b0 называется общим уравнением прямой. Оно свидетельствует о том, что пары точек (x, y), которые

Корреляционные плеяды, полученные расслоением матрицы

Рис. 5.5. Корреляционные плеяды, полученные расслоением матрицы

лежат на некоторой прямой, связанные так, что для любого значения х величину в в находящегося с ним в паре, можно найти, умножив х на некоторое число b1 добавив вторых, число b0 к этому произведению.

Коэффициент регрессии позволяет определить степень изменения следственной фактора при изменении причинного фактора на одну единицу. Абсолютные величины характеризуют зависимость между переменными факторами по их абсолютными значениями. Коэффициент регрессии вычисляют по формуле:

Планирование и анализ экспериментов. Планирование и анализ экспериментов - это третья важная отрасль статистических методов, разработанных для нахождения и проверки причинных связей между переменными.

Для исследования многофакторных зависимостей в последнее время все чаще используют методы математического планирования эксперимента.

Возможность одновременного варьирования всеми факторами позволяет: а) уменьшить количество опытов;

б) свести ошибку эксперимента к минимуму;

в) упростить обработку полученных данных;

г) обеспечить наглядность и легкость по сравнению результатов.

Каждый фактор может приобретать некоторую соответствующее количество различных значений, которые называются уровнями и обозначают -1, 0 и 1. Фиксированный набор уровней факторов определяет условия одного из возможных опытов.

Совокупность всех возможных сочетаний вычисляют по формуле:

Полным факторным экспериментом называется эксперимент, в котором реализуются все возможные сочетания уровней факторов. Полные факторные эксперименты могут обладать свойством ортогональности. При ортогональном планировании факторы в эксперименте является некоррелированными, коэффициенты регрессии, которые высчитывают в итоге, определяют независимо друг от друга.

Важным преимуществом метода математического планирования эксперимента является его универсальность, пригодность во многих областях исследований.

Рассмотрим пример сравнения влияния некоторых факторов на формирование уровня психического напряжения в регулировщиков цветных телевизоров.

В основу эксперимента положен ортогональный План 2 три (три фактора изменяются на двух уровнях).

Эксперимент проводили с полным части 2 +3 с трехкратным повторением.

Ортогональное планирование базируется на построении уравнения регрессии. Для трех факторов оно выглядит так:

Обработка результатов в этом примере включает:

а) построение ортогонального плана 2 +3 таблице для расчета;

б) вычисления коэффициентов регрессии;

в) проверку их значимости;

г) интерпретацию полученных данных.

Для коэффициентов регрессии упомянутого уравнения надо было поставить N = 2 3 = 8 вариантов, чтобы иметь возможность оценить значимость коэффициентов, где количество повторений К равнялось 3.

Составлена матрица планирования эксперимента выглядела.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее