Принцип дуальности

Сопоставление уравнений, составленных по первому и второму законам Кирхгофа, а также соотношений для последовательного и параллельного соединения элементов свидетельствуют о существовании таких цепей, у которых токи в одной цепи изменяются как напряжения в другой цепи. Уравнения таких цепей сходны по форме и отличаются лишь обозначениями. Эти цепи называют дуальными.

Дуальными являются, например, цепи, схемы которых изображены на рисунке 1.9, поскольку напряжение в одной схеме изменяется по такому же закону, как ток в другой схеме.

Рис. 1.9.

Действительно, для схемы рис. 1.9, а согласно первому закону Кирхгофа:

или .

Учитывая соотношения между напряжением и током для элементов:

и ,

получим уравнение для напряжения цепи:

(1)

Для схемы рис. 1.9, б по второму закону Кирхгофа или . Учитывая соотношения и получим уравнение для тока в цепи:

(2)

Уравнения (1) и (2) сходны по форме. Эти обыкновенные линейные неоднородные дифференциальные уравнения 1-го порядка. Второе уравнение получается из первого, если заменить u на i, С на L, G на R, i0 на e.

Приведенные пары величин также называются дуальными величинами.

Таким образом, дуальными являются напряжение и ток, емкость и индуктивность, проводимость и сопротивление, источник тока и источник напряжения. Параллельному соединению элементов исходной схемы соответствует последовательное соединение дуальных элементов в дуальной цепи.

Дуальные величины приведены в таблице 1.1.

Таблица 1.1.

1-я группа величин

2-я группа величин

ток

напряжение

напряжение

ток

проводимость

сопротивление

емкость

индуктивность

индуктивность

емкость

задающий ток

Э. Д. С.

Следовательно, чтобы получить цепь, дуальную заданной, необходимо в простейших случаях параллельное соединение элементов заменить последовательным, элемент проводимости - сопротивлением, емкость - индуктивностью, индуктивность - емкостью, источник тока - источником напряжения.

Для цепи, схема которой изображена на рис. 1.10, а, дуальной будет цепь - рис. 1.10, б.

Рис. 1.10.

Уравнение для напряжения в первой цепи и уравнение для тока во второй цепи будут отличаться лишь обозначениями. Если получено решение одного из уравнений, то в новых дуальных обозначениях это же будет решением второго уравнения.

Принцип дуальности (двойственности) гласит: если для данной электрической цепи справедливы некоторые законы, уравнения или соотношения, то они будут справедливы и для дуальных величин в дуальной цепи.

В этом и заключается содержание принципа дуальности. Использование принципа дуальности позволяет сократить выкладки и формулировки. Например, результаты анализа цепи (рис. 1.10, а), именуемой параллельным колебательным контуром, можно использовать для дуальной цепи - последовательного колебательного контура (рис. 1.10, б) путем замены всех величин дуальными. Тогда напряжение на элементе индуктивности (емкости) последовательного контура будет изменяться по такому же закону, как ток в элементе емкости (индуктивности) параллельного контура, напряжение на сопротивлении R - как ток в элементе G.

 
< Пред   СОДЕРЖАНИЕ   Скачать   След >