Меню
Главная
Авторизация/Регистрация
 
Главная arrow Информатика arrow Кэш-память

Размер строки и тега кэш-памяти

Немаловажная характеристика кэш-памяти - размер строки. Как правило, на одну строку полагается одна запись адреса (так называемый тег), которая указывает, какому адресу в оперативной памяти соответствует данная линия. Очевидно, что нумерация отдельных байтов нецелесообразна, поскольку в этом случае объем служебной информации в кэше в несколько раз превысит объем самих данных. Поэтому один тег обычно полагается на одну строку, размер которой обычно 32 или 64 байта (реально существующий максимум 1024 байта), и эквивалентен четырем (иногда восьми) разрядностям системной шины данных. Кроме того, каждая строка кэш-памяти сопровождается некоторой информацией для обеспечения отказоустойчивости: одним или несколькими битами контроля четности (parity) или восемью и более байтами обнаружения и коррекции ошибок (ЕСС, Error Checking and Correcting), хотя в массовых решениях часто не используют ни того, ни другого.

Размер тега кэш-памяти зависит от трех основных факторов: объема кэш-памяти, максимального кэшируемого объема оперативной памяти, а также ассоциативности кэш-памяти. Математически этот размер рассчитывается по формуле:

Stag=log2(Smem*A/Scache),

где Stag - размер одного тега кэш-памяти, в битах; Smem - максимальный кэшируемый объем оперативной памяти, в байтах; Scache - объем кэш-памяти, в байтах; А - ассоциативность кэш-памяти, в каналах.

Отсюда следует, что для системы с 1-Гбайт оперативной памятью и 1-Мбайт кэш-памятью с двухканальной ассоциативностью потребуется 11 бит для каждого тега. Примечательно, что собственно размер строки кэш-памяти никак не влияет на размер тега, но обратно пропорционально влияет на количество тегов. Следует понимать, что размер строки кэш-памяти не имеет смысла делать меньше разрядности системной шины данных, но многократное увеличение размера приведет к чрезмерному засорению кэш-памяти ненужной информацией и излишней нагрузке на системную шину и шину памяти. Кроме того, максимально кэшируемый объем кэш-памяти не обязан соответствовать максимально возможному устанавливаемому объему оперативной памяти в системе. Если возникнет ситуация, когда оперативной памяти окажется больше, чем может быть кэшировано, то в кэш-памяти будет присутствовать информация только из нижнего сегмента оперативной памяти. Именно такой была ситуация с платформой Socket7/Super7. Наборы микросхем для этой платформы позволяли использовать большие объемы оперативной памяти (от 256 Мбайт до 1 Гбайт), в то время как кэшируемый объем часто был ограничен первыми 64 Мбайт (речь идет о B-cache, находящемся на системной плате) по причине использования дешевых 8-бит микросхем теговой SRAM (2 бита из которых резервировалось под указатели действительности и измененности строки). Это приводило к ощутимому падению производительности.

Какая информация содержится в тегах кэш-памяти? Это информация об адресах, но как можно точно отобразить расположение строки кэш-памяти на всем пространстве кэшируемого объема оперативной памяти, используя столь незначительное количество адресных битов? Это понятие является фундаментальным в понимании принципов функционирования кэш-памяти. Рассмотрим предыдущий пример, с 11-бит тегами. Учитывая логическое сегментирование благодаря двухканальной ассоциативности, можно рассматривать данную кэш-память как состоящую из двух независимых сегментов по 512 Кбайт каждый. Представим оперативную память как состоящую из "страниц" по 512 Кбайт каждая - их будет соответственно 2048 штук. Далее, Iog2 (2048) = 11 (основание логарифма равно 2, так как возможны только два логических состояния каждого бита). Это означает, что фактически тег - не номер отдельной строки кэш-памяти, а номер "страницы" памяти, на которую отображается та или иная строка. Другими словами, в пределах "страницы" сохраняется прямое соответствие ее "строк" с соответствующими строками кэш-памяти, т. е. п-я строка кэш-памяти соответствует n-й "строке" данной "страницы" оперативной памяти.

Рассмотрим механизм работы кэш-памяти разных видов ассоциативности. Допустим, имеется абстрактная модель с восемью строками кэш-памяти и 64 эквивалентными строками оперативной памяти. Требуется поместить в кэш строку 9 оперативной памяти (заметим, что все строки нумеруются от нуля и по возрастающей). В модели с прямым отображением эта строка может занять только одно место: 9 mod 8=1 (вычисление остатка от деления нацело), т. е. место строки 1. Если взять модель с двухканальной ассоциативностью, то эта строка может занять одно из двух мест: 9 mod 4=1, т. е. строку 1 любого канала (сегмента). Полноассоциативная модель предоставляет свободу для размещения, и данная строка может занять место любой из восьми имеющихся. Другими словами, фактически имеется 8 каналов, каждый из которых состоит из 1 строки.

Ни одна из вышеуказанных моделей не позволит, разумеется, поместить в кэш больше строк, чем он физически в состоянии разместить, они лишь предлагают различные варианты, различающиеся балансом эффективности использования кэша и скорости доступа к нему.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее