Меню
Главная
Авторизация/Регистрация
 
Главная arrow Информатика arrow Нейросетевая экспертная система медицинской диагностики

ВВЕДЕНИЕ

Моя выпускная работа посвящена разработке нейросетевой экспертной системы медицинской диагностики. Работа такой экспертной системы основана на работе нейронных сетей, а так же их способности обучаться на основе данных.

Медицина- одна из наиболее важных областей применения нейронных сетей.

Нейронные сети наиболее эффективно работают, используя большие выборки данных для обучения в данном случае данные о больных: результаты их анализов, медицинского обследования, назначенного лечения, предоставленных медиками.

В своей работе я начала разработку нейросетевой экспертной системы, которая после обучения нейронных сетей способна была бы как можно точнее по данным пациента назначать лечение.

Прогнозирование лечения осложняется тем, что каждый пациент индивидуален, у некоторых пациентов могут быть абсолютно разные показатели, а зависимость между данными пациентов и их лечением, представленными в качестве данных для обучения сетей, может быть и не непрерывная, что не даёт возможности построить правильно работающую нейронную сеть. Поэтому было принято решение разделить полученные данные о пациентах на три кластера и построить нейронные сети для каждого из них.

В моей работе для построения нейронных сетей я использовала программу Statistica 7 и её модуль Neural Network. В будущем я планирую закончить собственное приложение для тренировки нейронных сетей, без использования программы Statistica. Так же, в качестве начального результата работы над таким приложением, в моей работе представлен модуль, который проводит кластеризацию информации методом к-средних.

Медицинские экспертные системы

Общие сведения

Экспертная система (ЭС) -- компьютерная программа, способная заменить специалиста-эксперта в разрешении проблемной ситуации. ЭС начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х получили коммерческое подкрепление.

В информатике экспертные системы рассматриваются совместно с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний -- как совокупность фактов и правил логического вывода в выбранной предметной области деятельности.

В эпоху массового внедрения персональных компьютеров во все сферы современной жизни естественным является стремление использовать компьютерные системы для поддержки все более сложных видов человеческой деятельности. Одной из них является деятельность врача, ключевой пункт работы которого - принятие диагностических и лечебных решений.

Принятие диагностических и лечебных решений часто оказывается затруднительным, особенно для начинающих врачей-специалистов или в тех случаях, когда врачу приходится принимать решение в ситуациях, относящихся к компетенции смежных медицинских специальностей.

В то же время значительный опыт и знания, накопленные врачами-специалистами высокого уровня - экспертами в своей области, позволяют им в большинстве случаев успешно принимать правильные диагностические и лечебные решения.

Поскольку принятие решений является результатом переработки определенной информации о пациенте и базируется на использовании накопленных знаний, можно ожидать, что компьютерные системы искусственного интеллекта и, в частности, экспертные системы (или системы, основанные на знаниях) способны помочь врачу в решении задач диагностики и выбора тактики лечения. Опираясь на знания экспертов, хранящиеся в памяти компьютера, медицинская экспертная система может помочь врачу "узнавать" клинические ситуации, характерные для тех или иных диагнозов или синдромов, оставляя за последним право принять или отвергнуть соответствующее диагностическое или лечебное решение, предложенное системой.

Область исследований, посвященная формализации способов представления знаний и построению экспертных систем (ЭС), называют «инженерией знаний». Этот термин введен Е. Фейгенбаумом и в его трактовке означает «привнесение принципов и средств из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов». Иными словами, экспертные системы применяются для решения неформализованных проблем, к которым относятся задачи, обладающие одной или несколькими характеристиками из следующего списка :

- задачи не могут быть представлены в числовой форме;

- исходные данные и знания о предметной области неоднозначны, неточны, противоречивы;

- цели нельзя выразить с помощью четко определенной целевой функции;

- не существует однозначного алгоритмического решения задачи.

Все вышеперечисленные свойства являются типичными для медицинских задач, так как в большинстве случаев они представлены большим объемом многомерных, запутанных, а порой и противоречивых клинических данных. ЭС позволяют решать задачи диагностики, дифференциальной диагностики, прогнозирования, выбора стратегии и тактики лечения и др.

Среди экспертных медицинских систем особое место занимают так называемые самообучающиеся интеллектуальные системы (СИС). Они основаны на методах автоматической классификации ситуаций из реальной практики или на методах обучения на примерах. Наиболее яркий пример СИС -- искусственные нейронные сети.

Искусственные нейронные сети (ИНС; artificial neural networks) представляют собой нелинейную систему, позволяющую классифицировать данные гораздо лучше, чем обычно используемые линейные методы. В приложении к медицинской диагностике ИНС дают возможность значительно повысить специфичность метода, не снижая его чувствительность.

Наиболее важным отличием ИНС от остальных методов прогнозирования является возможность конструирования экспертных систем самим врачом-специалистом, который может передать нейронной сети свой индивидуальный опыт и опыт своих коллег или обучать сеть на реальных данных, полученных путем наблюдений. Нейронные сети способны принимать решения, основываясь на выявляемых ими скрытых закономерностях в многомерных данных. Положительное отличительное свойство ИНС состоит в том, что они не программируются, т.е. не используют никаких правил вывода для постановки диагноза, а обучаются делать это на примерах. В ряде случаев ИНС могут демонстрировать удивительные свойства, присущие мозгу человека, в том числе отыскивать закономерности в запутанных данных. Нейронные сети нашли применение во многих областях техники, где они используются для решения многочисленных прикладных задач: в космонавтике, автомобилестроении, банковском и военном деле, страховании, робототехнике, при передаче данных и др. Другое, не менее важное, свойство нейронной сети состоит в способности к обучению и обобщению полученных знаний. Сеть обладает чертами так называемого искусственного интеллекта. Натренированная на ограниченном множестве обучающих выборок, она обобщает накопленную информацию и вырабатывает ожидаемую реакцию применительно к данным, не обрабатывавшимся в процессе обучения . Схематично процесс применения обученной ИНС в медицине показан на рисунке 1.

Схема применения обученной искусственной нейронной сети в медицине

Рисунок 1. Схема применения обученной искусственной нейронной сети в медицине

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее