Рабочая программа курса "Высшая математика"

Рабочая программа рассчитана на 180 учебных часов, содержит перечисление тем. которые должны быть изучены студентами. Последовательность изучения тем, методика их изложения и распределение по семестрам устанавливается с учетом потребностей специальных и смежных кафедр.

Содержание программы.

Элементы линейной алгебры.

1.1 Определители второго и третьего порядков и их свойства. Миноры и алгебраические дополнения. Разложение определителя по элементам какого-либо ряда. Понятие об определителях n-го порядка.

1.2 Решение систем линейных уравнений с помощью определителей. Формулы Крамера. Метод Гаусса.

1.3 Матрицы. Действия над матрицами. Обратная матрица. Матричная запись системы линейных уравнений и ее решение с помощью обратной матрицы.

1.4 Ранг матрицы. Основные теоремы о ранге. Вычисление ранга матрицы. Произвольные системы линейных уравнений. Теорема Кронекера-Капелли.

1.5 Жордановы исключения. Применения Жордановых исключений в линейной алгебре. Базисные и свободные переменные. Базисные решения. Метод Гаусса-Жордана

1.6 Метод полного исключения переменных. Нахождение базисных решений системы линейных уравнений. Неотрицательные базисные решения системы линейных уравнений.

1.7 Понятие собственных чисел и собственных векторов матриц. Методы их нахождения.

1.8 Понятие квадратичной формы. Положительно определенные квадратичные формы. Условия Сильвестра. Приведение квадратичной формы к каноническому виду.

Элементы аналитической геометрии и векторной алгебры.

2.1 Системы координат на прямой. плоскости. в пространстве. Основные задачи на метод координат (расстояние между двумя точками, деление отрезка в данном отношении).

2.2 Понятие об уравнении линии. Уравнение прямой с угловым коэффициентом. через точку в заданном направлении, через две точки. Общее уравнение прямой. Угол между двумя прямыми; условия параллельности и перпендикулярности двух прямых. Расстояние от точки до прямой.

2.3 Канонические уравнения кривых второго порядка; окружности, эллипса, гиперболы, параболы.

2.4 Векторы. Сложение и вычитание векторов. Умножение вектора на число. Длина вектора. Угол между векторами. Проекция вектора на оси. Координаты вектора. Скалярное произведение векторов.

2.5 Разложение вектора по системе векторов. Линейно зависимые и линейно независимые системы векторов. Базис системы векторов. Многомерные векторы. действия с ними. Ортогональные системы векторов. Переход от одного базиса к другому.

2.6 Плоскость. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору. Общее уравнение плоскости, его исследование, понятие гиперплоскости.

2.7 Неравенства первой степени на плоскости и их геометрический смысл. Решение линейных неравенств на плоскости и в пространстве.

 
< Пред   СОДЕРЖАНИЕ   Скачать   След >