Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow О теории вероятностей

Понятие и модели дисперсионного анализа

Дисперсионный анализ позволяет ответить на вопрос о наличии существенного влияния некоторых факторов на изменчивость фактора, значения которого могут быть получены в результате опыта. При проверке статистических гипотез предполагается случайность вариации изучаемых факторов. В дисперсионном анализе один или несколько факторов изменяются заданным образом, причем, эти изменения могут влиять на результаты наблюдений. Исследование такого влияния и является целью дисперсионного анализа.

Идея дисперсионного анализа заключается в том, что основная дисперсия разлагается в сумму составляющих ее дисперсий, каждое слагаемое которой соответствует действию определенного источника изменчивости. Например, в двухфакторном анализе мы получим разложение вида:

С2=А2+В2+АВ2+Z'2,

где

С2 -общая дисперсия изучаемого признака С

А2 -доля дисперсии, вызванная влиянием фактора А

В2 - доля дисперсии, вызванная влиянием фактора В

АВ2 - доля дисперсии, вызванная взаимодействием факторов А и В

Z'2 -доля дисперсии, вызванная неучтенными случайными причинами (случайная дисперсия).

В дисперсионном анализе рассматривается гипотеза: Н0 - ни один из рассматриваемых факторов не оказывает влияния на изменчивость признака. Значимость каждой из оценок дисперсии проверяется по величине ее отношения к оценке случайной дисперсии и сравнивается с соответствующим критическим значением, при уровне значимости , с помощью таблиц критических значений F - распределения Фишера-Снедекора. Гипотеза Н0 относительно того или иного источника изменчивости отвергается, если Fрасч. Fкр.

В дисперсионном анализе рассматриваются эксперименты трех видов:

А) эксперименты, в которых все факторы имеют систематические (фиксированные) уровни;

Б) эксперименты, в которых все факторы имеют случайные уровни;

В) эксперименты, в которых есть факторы, имеющие случайные уровни, а так же факторы, имеющие фиксированные уровни.

Все три случая соответствует трем моделям, которые рассматриваются в дисперсионном анализе.

Однофакторный дисперсионный анализ.

Рассмотрим единичный фактор, который принимает р различных уровней, и предположим, что на каждом уровне сделано n наблюдений, что дает N = np наблюдений. (все факторы имеют фиксированные уровни)

Пусть результаты представлены в виде Хij (i=1,2...,p; j=1,2...,n).

Предполагается, что доля каждого уровня n наблюдений имеется средняя, которая равна сумме общей средней и ее вариации обусловленной выбранным уровнем:

Xij = + Ai + ij,

где - общая средняя;

Ai - эффект, обусловленный i-м уровнем фактора;

ij - вариация результатов внутри отдельного уровня фактора. С помощью члена ij принимаются в расчет все неконтролируемые факторы.

Пусть наблюдения на фиксированном уровне фактора нормально распределены относительно среднего значения + Ai с общей дисперсией 2.

Тогда (точка вместо индекса обозначает усреднение соответствующих наблюдений по этому индексу):

Xij - X.. = (Xi. - X..) + (Xij - Xi.).

Иначе первую формулу можно записать: S = S1 + S2. Величина S1 вычисляется по отклонениям р средних от общей средней X.. , поэтому S1 имеет (р-1) степеней свободы. Величина S2 вычисляется по отклонениям N наблюдений от р выборочных средних и, следовательно, имеет N - р = np - p = p(n - 1) степеней свободы. S имеет (N -1) степеней свободы.

Если гипотеза о том, что влияние всех уровней одинаково, справедлива, то обе величины М1 и М2 будут несмещенными оценками 2. Значит, гипотезу можно проверить, вычислив отношение (М12) и сравнив его с Fкр. с 1= (р-1) и 2= (N - р) степенями свободы.

Если Fрасч. Fкр. , то гипотеза о незначимом влиянии фактора А на результат наблюдений не принимается.

Многофакторный дисперсионный анализ. Дисперсионный анализ в Excel.

Дисперсионный анализ позволяет ответить на вопрос о наличии существенного влияния некоторых факторов на изменчивость фактора, значение которого могут быть получены в результате опыта. При проверке статистических гипотез предполагается случайность вариации изучаемых факторов. В дисперсионном анализе один или несколько факторов изменяются заданным образом, причем, эти изменения могут влиять на результаты наблюдений. Исследование такого влияния и является целью дисперсионного анализа. Идея дисперсионного анализа заключается в том, что основная дисперсия разлагается на сумму составляющих ее дисперсий, каждое слагаемое которой соответствует действию определенного источника изменчивости. Например, в двухфакторном анализе мы получим разложение вида:

C2=A2 + B2 + AB2 + Z2

C2 - общая дисперсия изучаемого признака С;

A2 - доля дисперсии, вызванная влиянием фактора А;

B2 - доля дисперсии, вызванная влиянием фактора В;

AB2 - доля дисперсии, вызванная взаимодействием факторов А и В;

Z2 - доля дисперсии, вызванная неучтенными случайными причинами (случайная дисперсия);

В дисперсионном анализе рассматривается гипотеза Н0 - и один из рассматриваемых факторов не оказывает влияния на изменчивость признака. Значимость каждой из оценок дисперсии проверяется по величине ее отношения к оценке случайной дисперсии и сравнивается с соответствующим критическим значением, при уровне значимости , с помощью таблиц критических значений F-распределения Фишера-Снедекора. Гипотеза Н0 относительно того или иного источника изменчивости отвергается, если Fрасч>Fкр. В дисперсионном анализе рассматриваются эксперименты 3 видов:

1. эксперименты, в которых все факторы имеют систематические (фиксированные) уровни;

2. эксперименты, в которых все факторы имею случайные уровни;

3. эксперименты, в которых есть факторы, имеющие случайные уровни, а так же факторы, имеющие случайные уровни.

Двухфакторный дисперсионный анализ с повторениями представляет собой более сложный вариант однофакторного анализа, включающего более чем одну выборку для каждой группы данных. Двухфакторный дисперсионный анализ позволяет статистически обосновать существенность влияния факторных признаков А и В взаимодействия факторов (А и В) на результативный фактор F.

Двухфакторный дисперсионный анализ без повторений позволяет оценить существенность воздействия факторов А и В на результирующий фактор без учета воздействия взаимодействии факторов А и В.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее