Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow Основы теории вероятности

Непрерывные случайные величины

Непрерывной случайной величиной называют величину, которая может принимать любое числовое значение из некоторого конечного (a,b) или бесконечного интервала.

Множество возможных значений такой величины бесконечно.

Примером таких величин являются: величина ошибки при измерении расстояний, веса и др.; время бессбойной работы прибора, размеры детали, рост человека при обследовании определённой группы людей и др.

Закон распределения непрерывной с.в. имеет две формы:

интегральная функция распределения F(x) и дифференциальная функция распределения f(x).

§ Как и в случае с дискретной с.в., интегральная функция распределения F(x) имеет вид:

F(x)=P(X<x) (5.12)

Но в отличие от ступенчатой линии для F(x) в случае с дискретной с.в. для непрерывной с.в. имеем непрерывную кривую для F(x).

Свойства F(x):

1) 0F(x)1;

2) если >, то F()F();

3) P(a<X<b)=F(b)-F(a); (5.13)

4) P(X=)=0;

5) если Х (a,b), то ;

6) .

§ Дифференциальная функция распределения f(x) (плотность вероятности) есть производная от интегральной функции:

f(x)=

P(a<x<b)= (5.14)

(f(x)dx называется элементом вероятности)

F(x)= (5.15)

Свойства f(x):

1) f(x);

2) (5.16)

3) (

Наиболее употребимыми являются следующие законы распределения непрерывной с.в. (задаются они формулой для f(x)):

§ равномерное распределение вероятностей

Пусть [a,b] - шкала некоторого прибора. Вероятность p попадания указателя в некоторый отрезок шкалы [,] равна p=k(-), (k>0).

Тогда, так как

p(a<x<b)=1, то k(b-a)=1 k=

p(<x<)= F(x)=p(a<X<x)= (5.17)

График F(x) на рисунке 11.

рис.11

f (x)= (5.18)

рис.12

§ показательное распределение

(5.19)

F(x)= (5.20)

§ нормальное распределение

(5.21)

F(x)= (5.22)

Здесь a=M(x), - параметры распределения с.в.Х.

График f(x) представлен на рис.13 и называется нормальной кривой (кривой Гаусса).

рис.13

При a=0, имеем плотность нормированного распределения:

Эта функция табулирована (см. приложение 1), график её на рис.14.

рис.14

В этом случае интегральная функция распределения с.в.Х есть функция Лапласа:

(5.23)

График функции Лапласа Ф(х) на рис.15.

рис.15

Из него видно, что:

1) Ф(0)=0,

2) Ф(-х)=-Ф(х),

3)

Вероятность того, что Х примет значение, принадлежащее интервалу (c,d), находим по формуле:

(5.24)

Вероятность того, что абсолютная величина отклонения меньше положительного числа, равна:

, (5.25)

()

При а=0 справедливо равенство:

(5.25а)

§ Числовые характеристики непрерывной с.в.:

- математическое ожидание M(X)

(5.26)

(5.27)

- дисперсия D(X)

(5.28)

(5.29)

Эти равенства можно заменить равносильными равенствами:

(5.30)

(5.31)

- среднее квадратическое отклонение

(5.32)

При этом для равномерного распределения:

(5.33)

(5.34)

(5.35)

Для показательного распределения

:

(5.36); (5.37); (5.38).

Для нормального распределения:

M(X)=a (5.39); (5.40); (5.41).

Задачи

Задача №67. Автобусы некоторого маршрута идут строго по расписанию. Интервал движения 5 мин. Найти вероятность того, что пассажир, подошедший к остановке, будет ждать очередной автобус менее 3-х минут.

Решение. Пусть с.в. Т -время ожидания очередного автобуса - непрерывная случайная величина. Она распределена по равномерному закону с плотностью:

(см. формулу (5.18) )

В нашем случае

0<t<5

По формуле (5.14) имеем:

Искомая вероятность

p=0,6.

Задача №68. Цена деления шкалы измерительного прибора равна 0,2. Показания прибора округлены до ближайшего целого деления. Найти вероятность того, что при отсчёте будет сделана ошибка, не превышающая 0,04 (событие А).

Решение. Ошибку округления отсчёта можно рассматривать как с.в. Х, которая распределена равномерно в интервале между 2-мя соседними целыми делениями с плотностью

,

Ошибка отсчёта не превысит 0,04, если она будет заключена в (0; 0,04) или в(0,16;0,2). По формуле (5.14) имеем:

Искомая вероятность

р=0,4.

Задача №69. Найти математическое ожидание, дисперсию и среднее квадратичское отклонение с.в. Х, распределённой равномерно в интервале (2,8).

Решение. По формулам (5.32)-(5.34) получим:

.

Задача №70. Непрерывная с.в. Х распределена по показательному закону, заданному при дифференциальной функцией ; при х<0 Найти вероятность того, что в результате испытания Х попадёт в интервал (0,3; 1).

Решение. Исходя из формулы (5.19),

Пользуясь формулой (5.14), получим:

.

Искомая вероятность приближённо равна 0,414.

Задача №71. Непрерывная с.в. Х распределена по показательному закону

.

Найти числовые характеристики с.в. Х и вероятность того, что в результате испытания Х попадёт в интервал (2,5).

Решение.

1) Из формул (5.36)-(5.38) получим:

2) Из формулы (5.14) следует, что:

.

Задача №72. Задана плотность распределения количества прибыли Х:

Найти коэффициент a и вероятность получения величины прибыли Х из отрезка [0,5; 1] млн.гр

Решение.

1) В соответствии с определением модуля х:

- имеем:

3) Используя формулу (5.16) и свойство аддитивности несобственного интеграла, получаем:

рис.16

.

4) Используя формулу (5.14), получим:

Примечание. Подынтегральная функция , т.к. отрезок [0,5; 1] принадлежит положительной части оси Ох.

Ответ:

Задача №73. Математическое ожидание и среднее квадратическое отклонение нормального распределения случайной величины Х соответственно равны 20 и 5. Найти вероятность того, что в результате испытания Х примет значение, заключённое в интервале (15,25).

Решение. Воспользуемся формулой (5.24). Подставив

c=15, d=25, a=20, ,

получим:

По таблице (приложение 2) находим Ф(1)=0,3413

Ответ:

Задача №74. Контролируется длина Х выпускаемой детали, которая распределена нормально с математическим ожиданием (проектная длина), равным 50 мм. Фактическая длина детали не менее 32 мм и не более 68 мм.

Найти вероятность того, что длина наудачу взятой детали:

а) больше 55 мм;

б) меньше 40 мм.

Решение.

1) Событие является достоверным

С другой стороны, по формуле (5.24):

Приравниваем правые части равенств для

=1

Теперь имеем: математическое ожидание с.в. Х а=50, среднее квадратическое отклонение

2) Найдём

0,0823.

3)

Задача №75. В каких пределах должна изменяться случайная величина, подчиняющаяся нормальному закону распределения, чтобы выполнялось равенство: ?

Решение. Согласно формуле (5.25) имеем:

Из таблицы Ф(х) (приложение 2) находим:

Мы получили "правило 3-х сигм": вероятность того, что абсолютная величина отклонения нормально распределённой случайной величины будет меньше утроенного среднего квадратического отклонения, равна 0,9973.

Ответ: (а-3, а+3).

Задача№76. Станок автомат изготавливает детали, длина которых по стандарту может отклоняться от 125 мм не более, чем на 0,5 мм. Среди продукции станка 7% нестандартной.

Считая, что длины деталей имеют нормальное распределение, найти их дисперсию.

Решение. Пусть с.в. Х - длина детали, а=М(Х)=125.

Из условия:

Согласно формуле (5.24) имеем:

Так как станок даёт 7% нестандартной продукции, то:

Искомая дисперсия

D(X)=

Задача №77 ("из жизни хищников").

Для некоторого хищника вероятность удачной охоты равна 0,4 при каждом столкновении с жертвой.

Найти математическое ожидание с.в. Х - числа пойманных жертв при 20-ти столкновениях.

Решение. Случайная величина Х распределена по биномиальному закону при п=20, р=0,4.

Согласно формуле (5.9), имеем:

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее