Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow Основы теории вероятности и математической статистики

Что изучает теория вероятностей

вероятность событие комбинаторика статистика

Теория вероятностей - это раздел математики, изучающий модели случайных явлений. Случайными явлениями называются явления с неопределенным исходом, происходящие при неоднократном воспроизведении определенного комплекса условий. Становление и развитие теории вероятностей связано с именами таких великих ученых, как: Кардано, Паскаль, Ферма, Бернулли, Гаусса, Чебышева, Калмогорова и многих других. Закономерности случайных явлений впервые были обнаружены в16 - 17 вв. на примере азартных игр, подобных игре в кости. Очень давно известны так же закономерности рождения и смерти. Например, известно, что вероятность новорожденному быть мальчиком ? 0,515. В 19-20 вв. было открыто большое число закономерностей в физике, химии, биологии и т. д. В настоящее время методы теории вероятностей широко применяются в различных отраслях естествознания и техники: в теории надежности, теории массового обслуживания, в теоретической физике, геодезии, астрономии, теории стрельбы, теории ошибок наблюдений, теории автоматического управления, общей теории связи и во многих других теоретических и прикладных науках. Теория вероятностей служит также для обоснования математической и прикладной статистики, которая в свою очередь используется при планировании и организации производства, при анализе технологических процессов, предупредительном и приемочном контроле качества продукции и для многих других целей. В последние годы методы теории вероятностей все шире и шире проникают в различные области науки и техники, способствуя их прогрессу.

Испытание. Событие. Классификация событий

Испытание - это многократное воспроизведение одного и того же комплекса условий, при котором производится наблюдение. Качественный результат испытания - событие. Пример 1: В урне имеются цветные шары. Из урны на удачу берут один шар. Испытание - извлечение шара из урны; Событие - появление шара определенного цвета. О. 2: Множество взаимоисключающих исходов одного испытания называется множеством элементарных событий или элементарных исходов. Пример 2: Игральная кость подбрасывается один раз. Испытание - подбрасывание кости; Событие - выпадение определенного числа очков. Множество элементарных исходов - {1,2,3,4,5,6}. События обозначаются заглавными буквами латинского алфавита: А1,А2,…,А,В,С,… Наблюдаемые события (явления) можно подразделить на следующие три вида: достоверные, невозможные, случайные. О. 3: Событие называется достоверным, если в результате испытания оно обязательно произойдет. О. 4: Событие называется невозможным, если в результате испытания оно никогда не произойдет. О. 5: Событие называется случайным, если в результате испытания оно может либо произойти, либо не произойти. Пример 3: Испытание - мяч подбрасывается вверх. Событие A ={мяч упадет} - достоверное; Событие B={мяч зависнет в воздухе} - невозможное; Событие C={мяч упадет на голову бросавшему} - случайное. Случайные события (явления) можно подразделить на следующие виды: совместные, несовместные, противоположные, равновозможные. О. 6: Два события называются совместными, если при одном испытании, появление одного из них не исключает появление другого. О. 7: Два события называются несовместными, если при одном испытании, появление одного из них исключает появление другого. Пример 4: Монета подбрасывается два раза. Событие A - {Первый раз выпал герб}; Событие B - {Второй раз выпал герб}; Событие C - {Первый раз выпал орел}. События A и B - совместные, A и C - несовместные. О. 8: Несколько событий образуют полную группу в данном испытании, если они попарно несовместны и в результате испытания одно из этих событий обязательно появится. Пример 5: Мальчик бросает монетку в игральный автомат. Событие A ={мальчик выиграет}; Событие B={мальчик не выиграет}; A и B - образуют полную группу событий. О. 9: Два несовместных события, образующих полную группу называются противоположными. Событие противоположное событию A обозначается . Пример 6. Делается один выстрел по мишени. Событие A - попадание; Событие - промах.

О. 10: События называются равновозможными, если есть основания считать, что одно из них не является более возможным, чем другое. Пример 7: В урне содержится 10 шаров: 5 синих и 5 красных. Наудачу извлекается один шар. Событие A ={извлеченный шар красный}; Событие B={извлеченный шар синий}; A и B - равновозможные события.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее