Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow Основы теории вероятности и математической статистики

Понятие комбинаторики. Основные правила комбинаторики

Комбинаторика изучает количества комбинаций, подчиненных определенным условиям, которые можно составить из элементов заданного конечного множества.

Использование формул комбинаторики значительно облегчает проведение расчетов в теории вероятностей. 2. Основные правила комбинаторики Пусть А12,…,Аk - это элементы заданного конечного множества. Правило суммы: Если элемент A1 можно выбрать n1 способами, A2 можно выбрать n2 способами, An можно выбрать nk способами отличными от всех предыдущих, то выбор 1-го из элементов А1,А2,…,Аk может быть осуществлен n1+n2+…+nk способами. Пример 1. В коробке 20 шаров, причем 5 из них красные, 6 синие, а остальные зеленые. Сколько существует способов извлечь из ящика 1 шар или красного или синего цвета. Решение: n1+n2=5+6=11. Правило произведения: Пусть элемент A1 можно выбрать n1 способами, после каждого такого выбора элемент A2 можно выбрать n2 способами, после (k-1) - го выбора элемент Anможно выбрать nk способами, тогда выбор всех элементов в указанном порядке может быть осуществлен n1•n2•…•nk способами. Пример 2. В конкурсе участвуют 10 человек. Для определения порядка выступления конкурсантов проводят жеребьевку. Сколькими способами можно выбрать трех человек для выступления под номерами 1,2,3. Решение: n1•n2•n3 = 10•9•8=720

Основные комбинаторные соединения

Пусть дано множество из n элементов. Из этого множества могут быть составлены подмножества (комбинации) по m элементов трех основных видов: 1. перестановки; 2. размещения; 3. сочетания. Перестановки (m=n) О. 1. Перестановками без повторений называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их следования. Число всевозможных перестановок без повторений Pn=n! Пример 3. Сколько пятизначных чисел можно составить из цифр: числа 12345. Решение: О. 2. Перестановками с повторениями называются перестановки, в которых из общего числа n элементов имеется только k различных элементов, причем 1-й элемент повторяется n1 раз, 2-й элемент повторяется n2 раз, k-й элемент повторяется nk раз ().

Число всевозможных перестановок с повторениями

Пример 4. Сколько пятизначных чисел можно составить из цифр числа 12213. Решение: . Размещения и сочетания О. 3. Размещениями без повторений называют комбинации, составленные из n различных элементов по m элементов, которые отличаются либо составом элементов, либо порядком следования. Число всевозможных размещений без повторений

Пример 5. Десять студентов участвуют в конкурсе на назначение трех стипендий: президентской, губернаторской и потанинской. Причем, один человек может получить только одну стипендию. Сколько существует вариантов распределения стипендий. Решение:

О. 4. Размещениями с повторениями называются размещения, некоторые элементы (или все) которых могут оказаться одинаковыми. Число всевозможных размещений с повторениями

Пример 6. Десять студентов участвуют в конкурсе на назначение трех стипендий: президентской, губернаторской и потанинской. Причем, так как конкурс серьезный и победить в нем могут только настоящие вундеркинды, то для большего поощрения решено, что один человек может получить несколько стипендий одновременно. Сколько существует вариантов распределения стипендий. Решение: . O. 5. Сочетаниями без повторений называются комбинации, составленные из n различных элементов по m элементов, которые отличаются только составом. Число сочетаний без повторении

Пример 7. Десять студентов участвуют в конкурсе на назначение трех губернаторских стипендий. Причем один человек может получить только одну стипендию. Сколько существует вариантов распределения стипендий. Решение: . О. 6. Сочетаниями с повторениями называются сочетания некоторые элементы (или все) которых могут оказаться одинаковыми. Число всевозможных сочетаний с повторениями Пример 8. Десять студентов участвуют в конкурсе на назначение трех губернаторских стипендий. Причем, так как конкурс серьезный и победить в нем могут только настоящие вундеркинды, то для большего поощрения решено, что один человек может получить несколько стипендий одновременно. Сколько существует вариантов распределения стипендий. Решение: . Свойства сочетаний 1. ; 2. ; 3. ; 4. . Число размещений, перестановок и сочетаний связаны между собой равенством .

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее