Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow Основы теории вероятности и математической статистики

Закон распределения вероятностей ДСВ. Способы задания

Закон распределения вероятностей ДСВ Для того чтобы ДСВ была задана, не достаточно перечислить множество ее всевозможных значений, потому что две ДСВ могут иметь одинаковый перечень возможных значений, а вероятности принятия этих значений будут различными. О. 1. Законом распределения вероятностей (рядом распределения) ДСВ называется последовательность возможных значений дискретной случайной величины и соответствующих им вероятностей. Закон распределения вероятностей может быть задан: 1) Таблично, при этом первая строка в таблице содержит возможные значения ДСВ, а вторая - их вероятности:

X

x1

x2

xn

P

p1

p.

pn

2) Графически, для чего в прямоугольной системе координат строят точки , а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения.

3) Аналитически, т.е. в виде формулы. Наиболее распространенными аналитическими выражениями являются биномиальное, пуассоновское, геометрическое и гипергеометрическое распределения вероятностей. Т. к. в одном испытании ДСВ может принять только одно значение, то множество ее всевозможных значений образует полную группу событий и сумма их вероятностей равна единице:. 2. Способы задания. 1. Биномиальное распределение 2. Пуассоновское распределение 3. Геометрическое распределение 4. Гипергеометрическое распределение

Биноминальное распределение

Пусть выполнены все условия схемы независимых испытаний Бернулли. Рассмотрим в качестве ДСВ X число появлений события A в этих испытаниях. Т. е. величина X может принимать значения: . Вероятности этих значений определяются по формуле Бернулли: , . О. 1. Закон распределения вероятностей ДСВ X называется биномиальным, если вероятности ее возможных значений определяются по формуле Бернулли. Пример 1. Баскетболист делает три штрафных броска. Вероятность попадания при каждом броске равна 0.7. Составить закон распределения числа попаданий мяча в корзину. Решение:

X

P

0

0.189

1

0.441

2

0.343

3

0.027

Контроль:

Пуассоновское распределение

Пусть в схеме независимых испытаний Бернулли число испытаний достаточно велико (n>?), а вероятность появления события A очень мала (p>?). Рассмотрим в качестве ДСВ X число появлений события A в этих испытаниях. Т. е. величина X может принимать значения: . Вероятности этих значений определяются по формуле Пуассона:

,

a=np. О. 1. Закон распределения вероятностей ДСВ X называется пуассоновским, если вероятности ее возможных значений определяются по формуле Пуассона.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее