Геометрическое распределение

Пусть выполнены все условия схемы независимых испытаний. Испытания проводятся до 1-го появления события A. Т. е. если событие A появилось в k-м (катом) испытании, то в предыдущих (k-1) испытаниях оно не появлялось. Рассмотрим в качестве ДСВ X число испытаний, которые необходимо провести до 1-го появления события A. Т. о. возможные значения величины X: . Вероятности этих значений определяются по формуле: , где k=1.2….. (1) Если в эту формулу подставить последовательно вместо k:1.2…., то получим геометрическую прогрессию с 1-м членом p и знаменателем q (): . O. 4. Закон распределения вероятностей ДСВ X называется геометрическим, если вероятности ее возможных значений определяются по формуле (1) и образуют геометрическую прогрессию. Пример 2. Игральная кость подбрасывается до первого выпадения цифры шесть. Составить закон распределения числа подбрасываний игральной кости до первого выпадения цифры шесть. Решение:

.

X

P

1

1/6

2

5/36

3

25/31

Гипергеометрическое распределение

Пусть имеется N элементов, среди которых M обладают свойством A. Случайным образом выбирается n элементов (выбор каждого элемента равновозможен), причем выборка осуществляется без возвращения. Рассмотрим в качестве ДСВ X количество элементов k, обладающих свойством A среди отобранных n элементов. Т. е. величина X может принимать значения: . Вероятности этих значений определяются по формуле:

,

где . (2) O. 5. Закон распределения вероятностей ДСВ X называется гипергеометрическим, если вероятности ее возможных значений определяются по формуле (2). Пример 1. Гражданин приобрел случайным образом 5акций двадцати АО. Через год 6 из 20-ти АО разорились. Составить закон распределения и построить многоугольник распределения возможного числа акций банкротов среди купленных гражданином акций. Решение:

X

P

0

1001/7752

1

3003/7752

2

2730/7752

3

910/7752

4

105/7752

5

3/7752

Контроль: 1

Математическое ожидание ДСВ и его свойства

1. Математическим ожиданием M(X) ДСВ x называется сумма произведений возможных значений величины на соответствующие вероятности, т. е. . Вероятностный смысл M(X): математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины. 2.Свойства M(X): Математическое ожидание больше наименьшего и меньше наибольшего возможных значений; Если , то . Постоянный множитель можно выносить за знак математического ожидания: ; Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: ; Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: Зная лишь математическое ожидание случайной величины, еще нельзя судить ни о том, какие возможные значения она может принимать, ни о том, как они рассеяны вокруг математического ожидания.

 
< Пред   СОДЕРЖАНИЕ   Скачать   След >