Показательное распределение и его свойства

О.1. Закон распределения НСВ X называется показательным, если ее плотность распределения задается в виде

,

где - параметр показательного распределения. Свойства показательного распределения: 1.Зная плотность распределения и используя формулу , можно найти функцию распределения:

2. Если НСВ имеет показательное распределение, то ее числовые характеристики могут быть найдены по формулам:

3. Вероятность попадания показательно-распределенной НСВ в интервал определяется по формуле:

,

где значения определяются по таблице. Пример 2. Время безотказной работы элемента распределено по показательному закону с параметром (интенсивность отказов). Найти среднее время безотказной работы элемента, среднее квадратическое отклонение. Найти вероятность того, что элемент проработает безотказно не менее 4 лет, но не более 10. Решение:

;

.

Нормальное распределение и его свойства

Нормальное распределение, также называемое гауссовским распределением или распределением Гаусса -- распределение вероятностей, которое задается функцией плотности распределения:

где параметр м -- среднее значение (математическое ожидание) случайной величины и указывает координату максимума кривой плотности распределения, а уІ -- дисперсия.

Нормальное распределение играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина, подверженная влиянию значительного числа случайных помех, часто подчиняется нормальному распределению, поэтому из всех распределений в природе чаще всего встречается нормальное (отсюда и произошло одно из его названий).

Нормальное распределение зависит от двух параметров -- смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.

Моделирование нормальных случайных величин

Простейшие, но неточные методы моделирования основываются на центральной предельной теореме. Именно, если сложить много независимых одинаково распределённых величин с конечной дисперсией, то сумма будет распределена примерно нормально. Например, если сложить 12 независимых базовых случайных величин, получится грубое приближение стандартного нормального распределения. Тем не менее, с увеличением слагаемых распределение суммы стремится к нормальному.

Использование точных методов предпочтительно, поскольку у них практически нет недостатков. В частности, преобразование Бокса -- Мюллера является точным, быстрым и простым для реализации методом генерации.

Центральная предельная теорема

Нормальное распределение часто встречается в природе, нормально распределёнными являются следующие случайные величины:

· отклонение при стрельбе

· ошибки при измерениях

· рост человека

Такое широкое распространение закона связано с тем, что он является предельным законом, к которому приближаются многие другие (например, биномиальный).

Доказано, что сумма очень большого числа случайных величин, влияние каждой из которых близко к 0, имеет распределение, близкое к нормальному. Этот факт является содержанием центральной предельной теоремы.

 
< Пред   СОДЕРЖАНИЕ   Скачать   След >