Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow Основы теории вероятности и математической статистики

Показательное распределение и его свойства

О.1. Закон распределения НСВ X называется показательным, если ее плотность распределения задается в виде

,

где - параметр показательного распределения. Свойства показательного распределения: 1.Зная плотность распределения и используя формулу , можно найти функцию распределения:

2. Если НСВ имеет показательное распределение, то ее числовые характеристики могут быть найдены по формулам:

3. Вероятность попадания показательно-распределенной НСВ в интервал определяется по формуле:

,

где значения определяются по таблице. Пример 2. Время безотказной работы элемента распределено по показательному закону с параметром (интенсивность отказов). Найти среднее время безотказной работы элемента, среднее квадратическое отклонение. Найти вероятность того, что элемент проработает безотказно не менее 4 лет, но не более 10. Решение:

;

.

Нормальное распределение и его свойства

Нормальное распределение, также называемое гауссовским распределением или распределением Гаусса -- распределение вероятностей, которое задается функцией плотности распределения:

где параметр м -- среднее значение (математическое ожидание) случайной величины и указывает координату максимума кривой плотности распределения, а уІ -- дисперсия.

Нормальное распределение играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина, подверженная влиянию значительного числа случайных помех, часто подчиняется нормальному распределению, поэтому из всех распределений в природе чаще всего встречается нормальное (отсюда и произошло одно из его названий).

Нормальное распределение зависит от двух параметров -- смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.

Моделирование нормальных случайных величин

Простейшие, но неточные методы моделирования основываются на центральной предельной теореме. Именно, если сложить много независимых одинаково распределённых величин с конечной дисперсией, то сумма будет распределена примерно нормально. Например, если сложить 12 независимых базовых случайных величин, получится грубое приближение стандартного нормального распределения. Тем не менее, с увеличением слагаемых распределение суммы стремится к нормальному.

Использование точных методов предпочтительно, поскольку у них практически нет недостатков. В частности, преобразование Бокса -- Мюллера является точным, быстрым и простым для реализации методом генерации.

Центральная предельная теорема

Нормальное распределение часто встречается в природе, нормально распределёнными являются следующие случайные величины:

· отклонение при стрельбе

· ошибки при измерениях

· рост человека

Такое широкое распространение закона связано с тем, что он является предельным законом, к которому приближаются многие другие (например, биномиальный).

Доказано, что сумма очень большого числа случайных величин, влияние каждой из которых близко к 0, имеет распределение, близкое к нормальному. Этот факт является содержанием центральной предельной теоремы.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее