Меню
Главная
Авторизация/Регистрация
 
Главная arrow Экономика arrow Автокорреляционная функция. Примеры расчётов

Автокорреляционные функции

Последовательность коэффициентов корреляции rk, где k = 1, 2, ..., n, как функция интервала k между наблюдениями называется автокорреляционной функцией (АКФ).

Вид выборочной автокорреляционной функции тесно связан со структурой ряда.

· Автокорреляционная функция rk для «белого шума», при k >0, также образует стационарный временной ряд со средним значением 0.

· Для стационарного ряда АКФ быстро убывает с ростом k. При наличии отчетливого тренда автокорреляционная функция приобретает характерный вид очень медленно спадающей кривой [3, 268].

· В случае выраженной сезонности в графике АКФ также присутствуют выбросы для запаздываний, кратных периоду сезонности, но эти выбросы могут быть завуалированы присутствием тренда или большой дисперсией случайной компоненты.

Рассмотрим примеры автокорреляционной функции:

· на рис. 1 представлен график АКФ, характеризующегося умеренным трендом и неясно выраженной сезонностью;

· рис. 2 демонстрирует АКФ ряда, характеризующегося феноменальной сезонной детерминантой;

· практически незатухающий график АКФ ряда (рис. 3) свидетельствует о наличии отчетливого тренда.

Рис 1.

Рис 2.

Рис 3.

В общем случае можно предполагать, что в рядах, состоящих из отклонений от тренда, автокорреляции нет. Например, на рис. 4 представлен график АКФ для остатков, полученных от сглаживания ряда, очень напоминающий процесс «белого шума». Однако нередки случаи, когда остатки (случайная компонента h ) могут оказаться автокоррелированными, например, по следующим причинам [1, 172]:

· в детерминированных или стохастических моделях динамики не учтен существенный фактор фактически, нарушен принцип омнипотентности

· в модели не учтено несколько несущественных факторов, взаимное влияние которых оказывается существенным вследствие совпадения фаз и направлений их изменения;

· выбран неправильный тип модели (нарушен принцип контринтуитивности);

· случайная компонента имеет специфическую структуру.

Рис 4.

Критерий Дарбина-Уотсона

Критерий Дарбина-Уотсона (Durbin, 1969) представляет собой распространенную статистику, предназначенную для тестирования наличия автокорреляции остатков первого порядка после сглаживания ряда или в регрессионных моделях.

Численное значение коэффициента равно

d = [(e(2)-e(1))2 + ... + (e(n)-e(n -1))2]/[e(1)2 + ... + e(n)2],

где e(t) - остатки.

Возможные значения критерия находятся в интервале от 0 до 4, причем табулированы его табличные пороговые значения для разных уровней значимости (Лизер, 1971).

Значение d близко к величине 2*(1 - r1), где r - выборочный коэффициент автокорреляции для остатков. Соответственно, идеальное значение статистики - 2 (автокорреляция отсутствует). Меньшие значения соответствуют положительной автокорреляции остатков, большие - отрицательной [2, 193].

Например, после сглаживания ряда ряд остатков имеет критерий d = 1.912. Аналогичная статистика после сглаживания ряда - d = 1.638 - свидетельствует о некоторой автокоррелированности остатков.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее