Автокорреляционные функции
Последовательность коэффициентов корреляции rk, где k = 1, 2, ..., n, как функция интервала k между наблюдениями называется автокорреляционной функцией (АКФ).
Вид выборочной автокорреляционной функции тесно связан со структурой ряда.
· Автокорреляционная функция rk для «белого шума», при k >0, также образует стационарный временной ряд со средним значением 0.
· Для стационарного ряда АКФ быстро убывает с ростом k. При наличии отчетливого тренда автокорреляционная функция приобретает характерный вид очень медленно спадающей кривой [3, 268].
· В случае выраженной сезонности в графике АКФ также присутствуют выбросы для запаздываний, кратных периоду сезонности, но эти выбросы могут быть завуалированы присутствием тренда или большой дисперсией случайной компоненты.
Рассмотрим примеры автокорреляционной функции:
· на рис. 1 представлен график АКФ, характеризующегося умеренным трендом и неясно выраженной сезонностью;
· рис. 2 демонстрирует АКФ ряда, характеризующегося феноменальной сезонной детерминантой;
· практически незатухающий график АКФ ряда (рис. 3) свидетельствует о наличии отчетливого тренда.


Рис 1.


Рис 2.


Рис 3.
В общем случае можно предполагать, что в рядах, состоящих из отклонений от тренда, автокорреляции нет. Например, на рис. 4 представлен график АКФ для остатков, полученных от сглаживания ряда, очень напоминающий процесс «белого шума». Однако нередки случаи, когда остатки (случайная компонента h ) могут оказаться автокоррелированными, например, по следующим причинам [1, 172]:
· в детерминированных или стохастических моделях динамики не учтен существенный фактор фактически, нарушен принцип омнипотентности
· в модели не учтено несколько несущественных факторов, взаимное влияние которых оказывается существенным вследствие совпадения фаз и направлений их изменения;
· выбран неправильный тип модели (нарушен принцип контринтуитивности);
· случайная компонента имеет специфическую структуру.


Рис 4.
Критерий Дарбина-Уотсона
Критерий Дарбина-Уотсона (Durbin, 1969) представляет собой распространенную статистику, предназначенную для тестирования наличия автокорреляции остатков первого порядка после сглаживания ряда или в регрессионных моделях.
Численное значение коэффициента равно
d = [(e(2)-e(1))2 + ... + (e(n)-e(n -1))2]/[e(1)2 + ... + e(n)2],
где e(t) - остатки.
Возможные значения критерия находятся в интервале от 0 до 4, причем табулированы его табличные пороговые значения для разных уровней значимости (Лизер, 1971).
Значение d близко к величине 2*(1 - r1), где r - выборочный коэффициент автокорреляции для остатков. Соответственно, идеальное значение статистики - 2 (автокорреляция отсутствует). Меньшие значения соответствуют положительной автокорреляции остатков, большие - отрицательной [2, 193].
Например, после сглаживания ряда ряд остатков имеет критерий d = 1.912. Аналогичная статистика после сглаживания ряда - d = 1.638 - свидетельствует о некоторой автокоррелированности остатков.