Меню
Главная
Авторизация/Регистрация
 
Главная arrow Техника arrow Отсек летательного аппарата класса "Воздух -Воздух"

Нагрузки, действующие на корпус ЛА

При рассмотрении нагрузок на корпус надо иметь в виду две группы случаев нагружения: полетные расчетные случаи и случаи наземной эксплуатации и транспортировки.

В полетных случаях на корпус действуют:

нагрузки от крыла (подъемная сила, сопротивление, масса крыла). Это поверхностные сосредоточенные силы, приложенные в узлах крепления консолей крыла к корпусу;

нагрузки от рулей (в данном случае от стабилизаторов);

сила тяги двигателя (поверхностная сила, приложенная в узлах крепления двигателя);

аэродинамические силы, создаваемые корпусом в полете (поверхностная распределенная нагрузка);

инерционные силы (массовая распределенная нагрузка).

Последние (массовые силы) уравновешивают приложенные к корпусу ЛА поверхностные силы.

Нагрузки от крыла определяются заданным режимом полета. Характер и распределение их по корпусу зависят от конструкции соединения крыла с корпусом, а величины определяются при расчете на прочность консолей крыла. Эти нагрузки приводят к равнодействующим силам и моменту. Так как положение узлов крепления консолей неизвестно, то реакции консолей прикладываются к середине их бортовой хорды.

Нагрузки от оперения определяются и прикладываются аналогично нагрузкам от консолей крыла.

Сила тяги прикладывается на переднем днище двигателя ЛА.

Аэродинамическую нагрузку определяют по данным, полученным с помощью программы расчета аэродинамических коэффициентов «Aerodinamika» (см. рис. 2.3).

Ввод геометрических параметров исходного варианта ЛА в программу«Aerodinamika»Ввод геометрических параметров исходного варианта ЛА в программу«Aerodinamika»

Рисунок 2.4 - Ввод геометрических параметров исходного варианта ЛА в программу«Aerodinamika»

отсек летательный аэродинамический нагрузка

Задание диапазона расчетных точек в программу«Aerodinamika»Задание диапазона расчетных точек в программу«Aerodinamika»

Рисунок 2.5 - Задание диапазона расчетных точек в программу«Aerodinamika»

Из данной программы после ввода в нее летно-геометрических параметров (см.рис. 2.4 и 2.5) исходного варианта ЛА мы получаем необходимые нам для дальнейшего проектировочного расчета аэродинамические коэффициенты и координаты приложения подъемных сил:

(SF*CYALF) - производная по б коэффициента подъемной силы изолированного корпуса;

(KALF(K1)*KT1*S1*CYALK1) - производная по б коэффициента подъемной силы, возникающей на корпусе из-за влияния консолей первых несущих поверхностей;

((1-E/AR)*KALF(K2)*KT2*S2*CYALK2) - производная по б коэффициента подъемной силы, возникающей из-за влияния консолей вторых несущих поверхностей на подъёмную силу корпуса;

(K1*S1*CYALK1) - производная по б коэффициента подъемной силы изолированных консолей первых несущих поверхностей;

(KALK1(F)*KT1*S1*CYALK1) - производная по б коэффициента подъемной силы, возникающей из-за влияния корпуса на подъёмную силу консолей первых несущих поверхностей ;

((1-E/AR)*KT2*S2*CYALK2)- производная по б коэффициента подъемной силы изолированных консолей вторых несущих поверхностей;

((1-E/AR)*KALK2(F)*KT2*S2*CYALK2)- производная по б коэффициента подъемной силы, возникающей из-за влияния корпуса на подъёмную силу консолей вторых несущих поверхностей;

(CYA/AR)- суммарная производная по б коэффициента подъемной силы всего ЛА;

(XFF)- координата приложения подъемной силы изолированного корпуса;

(XFF(K1))- координата приложения подъемной силы, возникающей на корпусе из-за влияния консолей первых несущих поверхностей;

(XFF(K2))- координата приложения подъемной силы, возникающей на корпусе из-за влияния консолей вторых несущих поверхностей.

Составляющие подъемной силы корпуса соответственно подъемная сила изолированного корпуса; подъемная сила, возникающая на корпусе из-за влияния консолей первых несущих поверхностей; подъемная сила консолей первых несущих поверхностей; подъемная сила, возникающая на корпусе из-за влияния консолей вторых несущих поверхностей; подъемная сила консолей вторых несущих поверхностей можно определить как

Приближенно можно определить подъемную силу корпуса ЛА, зная ее вклад в создание подъемной силы ЛА, с использованием уравнения:

Схема приложения поверхностных сил к корпусу ЛА показана на рисунке 2.6.

Схема приложения поверхностных нагрузок к корпусу ЛАСхема приложения поверхностных нагрузок к корпусу ЛА

Рисунок 2.6 - Схема приложения поверхностных нагрузок к корпусу ЛА

Поверхностные силы, приложенные к корпусу ЛА, должны уравновешиваться массовыми нагрузками.

Массовые нагрузки можно представить в виде распределенных и сосредоточенных усилий.

Приближенно будем считать, что плотность компоновки корпуса постоянна, т.е. массовые нагрузки распределены по длине корпуса пропорционально площади его поперечного сечения.

Массовую нагрузку от линейного поперечного ускорения определяем

- плотность компоновки ЛА;(2.24)

- масса корпуса ЛА (с оборудованием, полезным грузом и т.д.);

- объем корпуса;

- величина поперечной перегрузки;

- площадь поперечного сечения корпуса.

Массовая нагрузка от углового ускорения

-угловое ускорение ЛА;

- момент поверхностных сил, действующих на корпус, относительно центра масс:

- координата приложения подъемной силы консолей первых несущих поверхностей;(2.27)

- координата приложения подъемной силы консолей вторых несущих поверхностей;(2.28)

- расстояние от носка фюзеляжа до бортовой нервюры консоли первых несущих поверхностей;

- расстояние от носка фюзеляжа до бортовой нервюры консоли вторых несущих поверхностей;

- длина бортовой нервюры консоли первых несущих поверхностей;

- длина бортовой нервюры консоли вторых несущих поверхностей;

- массовый момент инерции ЛА:

.(2.29)

- центр тяжести ЛА:

- координата от центра масс ЛА.

Суммарную массовую нагрузку определяем как сумму массовых нагрузок от линейного поперечного ускорения и от углового ускорения:

Массовая нагрузка от линейного продольного ускорения определяется формулой

- величина продольной перегрузки;(2.33)

-тяга двигателя.

Характер эпюр массовых нагрузок, приложенных к корпусу ЛА, показан на рисунке2.7.

Схема приложения уравновешивающих массовых нагрузок к корпусу ЛАСхема приложения уравновешивающих массовых нагрузок к корпусу ЛА

Рисунок 2.7 - Схема приложения уравновешивающих массовых нагрузок к корпусу ЛА

После определения всех нагрузок и уравновешивания корпуса строят эпюры поперечных сил , изгибающих моментов , продольных сил и сжимающих сил .

Уравнения, выражающие зависимость продольной силы от координаты по участкам:

Система уравнений для построения эпюр осевой силы по участкам имеет вид:

Уравнения, выражающие зависимость поперечной силы от координаты по участкам:

Система уравнений для построения эпюр поперечной силы по участкам имеет вид:

Для построения эпюры изгибающего момента необходимо проинтегрировать по координате :

Система уравнений для построения эпюр изгибающего момента по участкам имеет вид:

(2.39)

Определение эквивалентной сжимающей нагрузки . Уравнение, выражающие зависимость от координаты имеет вид:

Рассмотренный алгоритм реализован в программе «Нагрузка МК». Программа разработана в математическом пакете Mathcad 14. Инструкция пользователю приведена в Приложении Б.

Программа «Нагрузка МК» внедрена в учебный процесс.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее