Участие G-белков в реализации АЦ стимулирующего эффекта инсулина

Для доказательства участия G-белков в действии инсулина на активность АЦ был применен широко распространенный подход, в котором используется набор гуаниновых нуклеотидов, способных в разной степени либо стимулировать ГТФ-азную активность G-белков в присутствии ГТФ и его аналогов - ГТФ?S, ГИДФ и тем самым активировать АЦ, либо ингибировать ГТФ-азную активность G-белка в присутствии ГДФ?S.

Было исследовано влияние ГТФ и ряда его негидролизуемых аналогов на активность АЦ в присутствии и отсутствии гормона (Табл. 6).

Таблица 6. Влияние гуаниновых нуклеотидов в отсутствии и присутствии инсулина на активность АЦ во фракции мышечных мембран крысы и моллюска

Воздействия

Животные

Крыса

Моллюск

Активность АЦ (%)

Контроль

100±1.01%

100±1.3%

Инсулин (10-8М)

222±1.3%

(+122%)

186±1.8%

(+86%)

ГТФ?S (10-5М)

242±1.4%

(+142%)

470±9.4%

(+370%)

ГИДФ (10-5М)

236±1.8%

(+136%)

269±4.9%

(+169%)

ГТФ (10-5М)

135±1.05%

(+35%)

163±5.1%

(+63%)

ГДФ?S (10-5М)

95±1.2%

(-5%)

92±2.4%

(-8%)

Инсулин + ГТФ?S

473±2.5%

(+373%)

[109%]

726±20.3%

(+626%)

[170%]

Инсулин + ГИДФ

399±8.2%

(+299%)

[41%]

441±12.3%

(+341%)

[86%]

Инсулин + ГТФ

277±10.1%

(+177%)

[20%]

279±8.4%

(+179%)

[30%]

Инсулин + ГДФ?S

102±5.4%

(+2%)

[-17%]

105±4.3%

(+5%)

[-86%]

Примечание: в круглых скобках - активирующий АЦ эффект используемых агентов в% по отношению к базальной активности, принятой за 100%. В квадратных скобках - потенцирование эффекта гормона в присутствии гуаниновых нуклеотидов в %.

Согласно представленным данным, ГТФ?S, ГИДФ, ГТФ стимулируют активность АЦ в мышечных мембранах крыс и моллюсков. При совместном действии инсулина и гуаниновых нуклеотидов происходит усиление (потенцирование) эффекта гормона по сравнению с аддитивным эффектом гормона и гуаниновых нуклеотидов, действующих раздельно - в присутствии ГТФ?S, ГИДФ и ГТФ на +109%, +41% и +20% у крыс и на +170%, 86% и 30% у моллюсков (табл. 6). ГДФ?S же напротив снижает АЦ стимулирующий эффект инсулина как в мышцах крыс, так и моллюсков.

Потенцирование эффекта инсулина в присутствии ГТФ?S, ГИДФ, ГТФ и отсутствие потенцирующего эффекта в присутствии ГДФ?S свидетельствует о вовлеченности Gs-белков в АЦ сигнальный механизм действия пептидов инсулинового суперсемейства.

Таблица 7. Влияние коклюшного и холерного токсинов на базальную, инсулин- и ИФР1-стимулируемую активность АЦ в скелетных мышцах крысы и моллюска A.cygnea

Активность АЦ (пкмоль цАМФ/мин/мг белка)

Воздействия

Скелетные мышцы крысы

Гладкие мышцы моллюска

Без КТ

+КТ

Без КТ

+КТ

Без пептидов

39.7 ±3.4

48.5 ±2.0

63.2 ±4.1

69.1 ±9,6

(100%)

(100%)

(100%)

(100%)

Инсулин

67.9 ±3.6

48.2 ±2.7

200.5 ±14.4

74.2 ±7.6

10-9М

(171%)

(99%)

(317%)

(108%)

ИФР-1

57.4 ±2.1

43.1 ±1.6

139.2 ±12.4

76.8 ±7.3

10-9М

(145%)

(89%)

(220%)

(111%)

Без ХТ

+ХТ

Без ХТ

+ХТ

Без пептидов

39.6 ±2.6

79.7 ±2.7

47.4 ±3.0

94.3 ±5.6

(100%)

(100%)

(100%)

(100%)

Инсулин

69.3 ±2.8

105.8 ±7.4

151.7 ±9.8

134.0 ±7.5

10-9М

(175%)

(133%)

(320%)

(142%)

ИФР-1

56.7 ±4.2

106.2 ±6.5

100.0 ±5.4

122.6 ±8.8

10-9М

(143%)

(133%)

(210%)

(130%)

Примечание: В скобках - активность АЦ в%. Активность АЦ без пептидов принята за 100%.

Для выяснения типов G белков, вовлеченных в АЦ сигнальный механизм действия инсулина и ИФР-1 были использованы бактериальные токсины (коклюшный и холерный), которые модифицируют ?-субъединицы Gi и Gs белков.

Коклюшный токсин вызывает АДФ-рибозилирование ?i-субъединицы Gi белка, что ведет к потере его функциональной активности (Milligan, 1988; Reisine, 1990). Известно, что ??-димер Gi белка обладает собственной регуляторной способностью и может стимулировать активность ФИ-3-К. Обработка мышечных мембран крысы и моллюска коклюшным токсином приводила к блокированию АЦ стимулирующего эффекта, как инсулина, так и ИФР-1 (таблица 7), что можно объяснить нарушением диссоциации гетеротримерного Gi белка на ?i-субъединицу и ?? димер в условиях действия коклюшного токсина.

Таким образом, коклюшный токсин, предотвращая индуцируемую инсулином или ИФР-l стимуляцию активности ФИ-3-К, реализуемую через ??-зависимый механизм, тормозит активацию АЦ.

Влияние холерного токсина на мембраны приводит к блокаде ГТФ-азной активности ?s-субъединицы и тем самым переводит её в перманентно активированное состояние. В связи с этим обработка мембран холерным токсином может повлечь за собой стимулирование каталитической активности АЦ и наряду с этим ослабление регуляторных эффектов гормонов, действие которых на АЦ осуществляется через Gs белок (Milligan, 1988; Reisine, 1990). Обработка фракции мышечных мембран крысы и моллюска холерным токсином приводит к 2х-кратному увеличению базальной активности АЦ и снижению стимулирующего эффекта инсулина и ИФР-1 на активность фермента (таблица 7), что полностью согласуются со сведениями литературы и указывает на вовлеченность Gs белка в активацию АЦ с участием инсулина или ИФР-1.

Таким образом, совокупность данных, полученных с использованием коклюшного и холерного токсинов, указывает на участие как Gi, так и Gs белков в АЦ сигнальном механизме действия инсулина и ИФР-l.

 
< Пред   СОДЕРЖАНИЕ   Скачать   След >