Решение Обыкновенных Дифференциальных Уравнений (ОДУ)
ОДУ первого порядка.
ОДУ первого порядка называется уравнение
F(x,y,y')=0
F - известная функция трех переменных;
x - независимая переменная на интервале интегрирования[a,b];
y - неизвестная функция;
y' - ее производная.
Функция y(x) является решением дифференциального уравнения, если она при всех x[a,b] удовлетворяет уравнению
F(x,y(x),y'(x))=0
График решения y(x) называется интегральной кривой дифференциального уравнения. Если не заданы начальные условия, таких решений y(x) будет множество. При известных начальных условиях y(x0)= y0 решение y(x) будет единственным.
Вычислительный процессор MathCAD может работать только с нормальной формой ОДУ. Нормальная форма ОДУ - это ОДУ, разрешенное относительно производной
y'=f(x,y)
ОДУ высших порядков.
Обыкновенным дифференциальным уравнением n-го порядка называется уравнение вида
F(x,y,y',y'', …,y(n))=0
F - известная функция n+2 переменных;
x - независимая переменная на интервале интегрирования[a,b];
y - неизвестная функция;
n - порядок уравнения.
Функция y(x) является решением дифференциального уравнения, если она при всех x[a,b] удовлетворяет уравнению
F(x, y(x), y'(x), y''(x),…, y(n)(x))=0
Нормальная форма ОДУ высшего порядка имеет вид
Y(n) =f(x, y, y', …, y(n-1))
Если не заданы начальные условия, то дифференциальное уравнение n - го порядка имеет бесконечное множество решений, при задании начальных условий y(x0)= y0, y'(x0)= y0,1, y''(x0)= y0,2, …, y(n-1)(x0)= y0,n-1 решение становится единственным (задача Коши).
Задача Коши для дифференциального уравнения n - го порядка может быть сведена к задаче Коши для нормальной системы n дифференциальных уравнений 1 го порядка, которая в векторной форме имеет вид
Y' = F(x, Y), Y(x0) = Y0
Y(x0) = Y0 - вектор начальных условий;
Y'=(y'1, y'2, …, y'n) - вектор первых производных;
F(x, Y) = (y2, y3, …, yn, f(x,y1, … , yn) - вектор правых частей;
Y = (y2, y3, …, yn) - вектор искомого решения.
Эта система получается в результате следующей замены:


,где




Для численного интегрирования ОДУ в MathCAD имеется выбор - либо использовать вычислительный блок Given/Odesolve, либо встроенные функции. Оба способа обладают одинаковыми возможностями, но при использовании блока решения запись уравнений более привычна и наглядна, однако отдельная функция может быть использована в составе других функций и программ. Рассмотрим оба варианта решения.