Меню
Главная
Авторизация/Регистрация
 
Главная arrow Техника arrow Модернизация крытого вагона с целью улучшения его экономических показателей

Расчет напряжений и оценка прочности

Согласно «Нормам…» крыша рассчитывается на прочности и устойчивость при действие двух сил по 1 кН каждая, приложенных на площадке 0,25х0,25 м на расстоянии 0,5 м друг от друга в любой части крыши и дополнительно рассчитывается при третьем режиме (как наиболее опасном).

При расчете по третьему расчетному режиму принимается следующее сочетание нагрузок действующих на крышу:

? сила тяжести крыши;

? вертикальная динамическая сила, определяется умножением силы тяжести крыши на коэффициент вертикальной динамики, для кузова вагона.

Схема приложения нагрузок к крыше показана на рисунке 37.

Схема приложения нагрузок при первом режимеСхема приложения нагрузок при первом режиме

Рисунок 37 - Схема приложения нагрузок при первом режиме

Схема приложения нагрузок при третьем режимеСхема приложения нагрузок при третьем режиме

Рисунок 38 - Схема приложения нагрузок при третьем режиме

В результате расчета были получены напряженные состояния крыши от действия рассматриваемых сил.

Распределение эквивалентных напряжений по Мизесу показано на рисунках 39-40.

а)

б)

в)

г)

д)

е)

Рисунок 39 ? Распределение эквивалентных напряжений при первом режиме а), б), в) для металлической крыши; г), д), е) для стеклопластиковой крыши

? Распределение эквивалентных напряжений при третьем режиме а), б) для металлической крыши; в), г) для стеклопластиковой крыши ? Распределение эквивалентных напряжений при третьем режиме а), б) для металлической крыши; в), г) для стеклопластиковой крыши

Рисунок 40 ? Распределение эквивалентных напряжений при третьем режиме а), б) для металлической крыши; в), г) для стеклопластиковой крыши

Максимальные эквивалентные напряжения в крыши при действии двух сил по 1 кН каждая, приложенных на площадке 0,25х0,25 м на расстоянии 0,5 м не превышает допускаемые напряжения. Максимальные эквивалентные напряжения в крыши для третьего режима не превышают допускаемого напряжения. Также в каркасе крыши, выполненном из стали, так же возникают напряжения, в некоторых режимах они максимальные в конструкции, но они так же в пределах допустимого.

Для дальнейшего расчета устойчивости используются напряжения элементов крыши, рассчитываемые в автоматическом режиме в программном комплексе ANSYS версия 13.0.

Расчет устойчивости

Проверка устойчивости конструкций производится путем сравнения расчетного коэффициента запаса устойчивости n с допускаемым [n]:

, (18)

где ? критическое напряжение сжатия, при котором конструкция теряет устойчивость;

? напряжения сжатия элемента, рассчитываемые в автоматическом режиме в программном комплексе ANSYS версия 13.0.

Программный комплекс ANSYS версия 13.0 в автоматическом режиме сравнивает критические напряжения с напряжениями сжатия.

В результате расчета были получены формы потери устойчивости и соответствующие им коэффициенты запаса устойчивости. Форма потери устойчивости и соответствующий ей коэффициент запаса устойчивости при первом режиме представлены на рисунках 41-43.

? Первая форма потери устойчивости? Первая форма потери устойчивости

Рисунок 41 ? Первая форма потери устойчивости

а) для металла п= 44,05; б) для стеклопластика п= 875,53

а)

б)

? Вторая форма потери устойчивости? Вторая форма потери устойчивости

Рисунок 42 ? Вторая форма потери устойчивости

а) для металла п= 45,77; б) для стеклопластика п= 1054,91

а)

б)

? Третья форма потери устойчивости? Третья форма потери устойчивости

Рисунок 43 ? Третья форма потери устойчивости

а) для металла п = 50,17; б) для стеклопластика п = 1558,96

Формы потери устойчивости и соответствующие им коэффициенты запаса устойчивости при третьем режиме представлены на рисунках 44-46.

? Первая форма потери устойчивости? Первая форма потери устойчивости

Рисунок 44 ? Первая форма потери устойчивости:

а) для металла п = 150698; б) для стеклопластика п = 148353

? Вторая форма потери устойчивости? Вторая форма потери устойчивости

Рисунок 45 ? Вторая форма потери устойчивости

а) для металла п= 151226; б) для стеклопластика п= 148872

? Третья форма потери устойчивости? Третья форма потери устойчивости

Рисунок 46 ? Третья форма потери устойчивости

а) для металла п = 156060; б) для стеклопластика п = 153632

Полученные в результате расчета коэффициенты запаса устойчивости при первой и третьем режиме не менее чем допускаемое значение [n] =1,1.

Выводы сравнения результатов расчета металлической и стеклопластиковой крыши приведены таблице 10.

Таблица 10 - Сравнительная характеристика металлической и стеклопластиковой крыши

Показатель

Металлическая крыша

Стеклопластиковая крыша

1 Масса, кг

1800

350

2 Максимальное напряжение при I режиме, кПа

2180

322

3 Максимальное напряжение при III режиме, кПа

332

253

4 Минимальный коэффициент запаса устойчивости при I режиме

44,05

875,53

5 Минимальный коэффициент запаса устойчивости при III режиме

150698

148353

Видно, что стеклопластиковая крыша не уступает металлической, а по некоторым показателям даже превосходит (запас устойчивости у нее выше при первом режиме, при примерно равных механических свойствах - она легче).

Выигрыш в весе приводит к увеличению грузоподъемности вагона на 5 тонн. Что в свою очередь повышает экономическую эффективность вагона. Рассмотрим этот вопрос.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее