Меню
Главная
Авторизация/Регистрация
 
Главная arrow Логика arrow Логика

Умозаключение

Умозаключение - это речь, в которой если нечто предположено, то с него закономерно вытекает нечто отличное от предположенного.

Аристотель

Общая характеристика умозаключения.

Умозаключение (лат. ratio) - в традиционной логике - форма мышления, посредством которой на основании одного и более высказываний выводится новое выражение.

Структура умозаключения: цель (основания); заключение; правила вывода заключения из зародыше (предпосылок).

Цель (основание) - это высказывание, что составляет основание для определенного вывода в умозаключении; структурная часть умозаключения.

Вывод (лат. conclusio) - высказывание, которое вытекает из зародыше (предпосылок); то же, что заключение (лат. conclude), следствие; структурная часть умозаключения, которая означает новое высказывание, которое определяется на основании определенных высказываний или оснований в соответствии с правилами вывода заключения из оснований.

Правила вывода формулируются на основании логических законов, которые обусловливают необходимость выведения заключения из оснований, следовательно, законы логики называют обоснованием вывода. За соблюдение правил вывода умозаключение называют правильным, а за их нарушение - неправильным.

Если цель (основания) и вывод выраженные в умозаключении явно, то правила вывода выражены неявно, то есть они мыслятся (имеются в виду, предусматриваются). Так, в умозаключении - "Все софисты сознательно нарушают законы логики. Н. - софист. Следовательно, Н. сознательно нарушает законы логики" - первые два высказывания являются основаниями, а заключением - третье высказывание, которое отделяется словом "так".

Регулярное выражение выведения заключения из зародыше (оснований) имеет такой вид: А -> В, где А - цель, В заключение, -" - символ вывода.

Особенности умозаключения как формы мышления определяются в понятиях "логическое следование" и "вывод".

Логическое следование

Такое отношение между высказываниями А и В, если из высказывания А следует высказывание Б; соответственно, если высказывание А - истинно, то высказывание Б - истинное. Языковой формой выражения логического следования является союз "если..., то..." ("Если А, то Б").

Различают строгое следование, нестрогое следование и отсутствие следования между высказываниями А и Б.

Строгое следование - такое отношение между высказываниями А и В, когда А необходимо следует Б и в, если А - истинно, то Б истинно. Например: "Если деяние лица Т. содержат признаки уголовного правонарушения, предусмотренного УК Украины, то оно является преступлением"; "Если это число делится на 2, то оно четное".

Нестрогое следование - такое отношение между высказываниями А и Б, когда с А ненеобхідне (вероятностное) следует: "Если светит солнце, то на улице жара" (Солнце может светить, к примеру, зимой, но жары нет).

Отсутствие следования - такое отношение между высказываниями А и В, если из А логически следует Бы. Например, "Если это высказывание бессмысленное, то оно истинно" (Истинным может быть только высказывание, которое имеет определенный смысл, смысл).

Различают интуитивное понимание следование, основанное на обобщении личного и общечеловеческого опыта людей и строгое понимание термина "расследования" в науке логике.

В науке логике высказывания, которое содержит следования, называется імплікативним.

Осмысление специфики следования в рассуждениях осуществляли философы и логики, начиная с времен античности. В частности, средневековый философ и логик У. Оккам различал такие виды следования:

- простое ("Из необходимого не следует (не следует) случайное", "Из возможного не следует (не следует) невозможно");

- фактическое следование, истинность которого определяется по факту отбытия событий (например: "Если наступила весна, то зацвели сады");

- формальное следование, что устанавливается чисто в формальном связи между антецедентом и консеквентом. Такое следование в современной символической логике называется материальной імплікацією (см. 4.2.2);

- каузальное следование, когда высказывания А и В отражают причинно-следственную связь между предметами, явлениями объективного мира: "Если металл нагреть, то он расплавится".

Вывод

Логический процесс установления необходимой связи между двумя и более высказываниями, когда одно высказывание В необходимо вытекает из другого высказывания А, в результате чего: если высказывание А - истинно, то новое выражение В - истинно. Высказывания А называется основанием, а высказывание В, которое следует из зародыше - выводом. Вывод высказывания В из высказывания А имеет символический выражение: А ->, где -> - символ вывода следования.

Процесс вывода осуществляется в логической форме умозаключения по правилам, которые формулируются на основании логических законов.

Умозаключение, в котором вывод заключения из оснований осуществляется на основании принципа логического следования, называется правильным. В зависимости от строгости вывода заключения из оснований различают логически необходимый или ненеобхідний (вероятностные) выводы. Логически необходимый вывод строго імплікується основаниями, то есть выведение заключения из оснований осуществляется строго по принципу логического следования и, соответственно, если предпосылки верны, то и вывод - истинный. Логически необходимый вывод обеспечивает дедуктивное умозаключение.

Ненеобхідний, или вероятностный вывод нестрого імплікується основаниями, соответственно, истинности заключения масс определенную степень вероятности от О > Я < /, где О - значение ложности высказывания, / - значение истинности. Вероятностный вывод обеспечивает индуктивное умозаключение и умозаключение по аналогии.

Формальная правильность построения умозаключения еще не обеспечивает выведение истинности заключения из истинности предпосылок, следовательно, вывод может быть ошибочным. Это проявляется тогда, когда умозаключение формально правильно построен, но по содержанию цель (основания) являются ошибочными, соответственно, и вывод будет ложным. Например, в умозаключении - "ни Один студент не учится на отлично. Н. - студент. Следовательно, Н. не учится на отлично" - в первом зародыше свойство "не учиться на отлично" приписывается всему классу студентов, соответственно, этот цель ошибочный и формальная правильность выведения заключения из приведенных оснований не обеспечивает истинность заключения.

Виды умозаключения:

1. По форме построения различают дедуктивное умозаключение (дедукция); индуктивное умозаключение (индукция); умозаключение по аналогии (аналогия).

2. За строгостью вывода заключения из оснований различают необходимый умозаключение и вероятностное умозаключение.

3. По способу формального выражения различают формально и неформально построенные умозаключения. Формально построен умозаключение - система символов формализованного языка, в которой на основании принципа логического следования из одной формулы закономерно выводится новая формула. Например: (А -" В, А) -> В. Признаки формального вывода - строгость и необходимость вывода одной формулы из другой. Общие схемы вывода одной формулы из другой по законам (правилам) вывода определены в символической логике (см. 4.2).

Неформально построен умозаключение - - система высказываний, выраженных на естественном языке, в структуру которых входят термины, имеющие определенный конкретный смысл и предметное значение. Вывод выделяется от зародыше (оснований) словами "так", "вероятно", "возможно". Например: "По типу государственного правления государство является республикой или монархией. Государство Я. по типу государственного правления не является монархией. Следовательно, государство Я. по типу государственного правления является республикой"; "Все граждане Украины имеют право на образование. Я. - гражданин Украины. Следовательно, Я. имеет право на образование".

4. По количеству предположений, из которых выводится заключение, различают непосредственный и опосредованный умозаключения.

Непосредственное умозаключение - когда выведения заключения осуществляется на основании одного зародыше.

Опосредованное умозаключение - когда выведение вывода выполняется на основании двух и более оснований.

Дедуктивное умозаключение

Дедуктивное умозаключение или дедукция (лат. - отвод) - разновидность умозаключения, в котором осуществляется движение рассуждений от общего к частному, от частного к единичному, где общим - в неформально построенном умозаключении - есть высказывание, выражающее закон, принцип, правила и другие теоретически сформулированы положения, а в формально построенном умозаключении - аксиомы. Это логически необходимый вывод, который выводится из определенных предположений на основании принципа логического следования. Например: "Все имена собственные пишутся с большой буквы. Слово "Киев" - имя собственное. Итак, слово "Киев" пишется с большой буквы".

С возникновением символической логики отделились две теории дедуктивного умозаключения: 1. Теория дедуктивного умозаключения (теория вывода) традиционной логики. Первая теория дедуктивного умозаключения была создана Аристотелем и получила название силлогистики. 2. Теория дедуктивного умозаключения (теория вывода) символической логики. Она получила название формальной теории дедукции.

Теория дедуктивного умозаключения в традиционной логике получила название силлогистики, создателем которой был Аристотель.

Силлогистика (греч. syllogisiikos - то, что делает вывод) - теория вывода традиционной логики. В силогістиці Аристотеля определена схема выведения заключения из оснований, которые являются простыми категорическими (атрибутивными) высказываниями вроде: "Все S есть Р(А) "; "ни Одно 5 не есть Р(Е) "; "Некоторые S есть Р(/)"; "Некоторые 5 не есть Р(О)". На основании определения субъектно-предикатної структуры категорических (атрибутивных) высказываний и установление логических отношений между ними, осуществляется процесс выведения заключения. Каждый отдельный (единичный) умозаключение, который создается в результате выведения заключения из зародыше (оснований) по правилам логического следования, называется силогізмом.

Силлогизм (греч. syllogismos) - термин, обозначающий дедуктивное умозаключение. В теории силлогистики Аристотеля были определены непосредственные и опосредованные силлогизмы. В дальнейшем историческом развитии теории дедуктивного умозаключения были отделены новые виды силогізмів: условный, условно-категорический, разделительно-категорический; условно-разделительный.

Непосредственный силлогизм - это силлогизм, в котором вывод заключения осуществляется с одного зародыше по четко определенным правилам с помощью логических операций преобразования высказывания, обращения высказывания, противопоставление предикатові.

Осуществляя логические операции превращения, обращения, противопоставления предикатові стоит замечать не только субъектно-предикатну структуру высказываний, но и розподіленість терминов в них (см. 3.4.2).

Преобразование высказывания - логическая операция, с помощью которой осуществляется преобразование утвердительного высказывания на оспаривающее его и наоборот; выведение выводу на основании одного зародыше по правилам преобразования, и, соответственно, если цель - истинный, то за соблюдение правил преобразования, вывод является истинным.

1. Загальностверджувальне высказывания (А) превращается в общее оспаривающее его (Е): А -> Е. Формальный выражение преобразования: "Все S есть Р, следовательно, ни одно 5 не есть не-Р". Например: "Все имена собственные пишутся с большой буквы. Следовательно, ни одно собственное имя не пишется не с большой буквы".

2. Загальнозаперечне высказывания (Е) превращается в загальностверджувальне (А): Е -> А. Формальный выражение преобразования: "ни Одно S не есть ?, следовательно, все S есть не-Р". К примеру: "Ни один источник энергии не является вечным. Итак, все источники энергии являются не вечными".

3. Частковостверджувальне высказывания (/) превращается в частковозаперечне (А): и" -> О. Формальный выражение преобразования: "Некоторые S есть Р, следовательно, некоторые S не есть не-Р": "Некоторые государства по государственному устройству являются унитарными. Следовательно, некоторые государства по государственным устройством не является унитарными".

4. Частковозаперечне высказывания (О) превращается в частковостверджувальне (/): А -> И, Формальное выражение преобразования: "Некоторые S не есть Р, следовательно, некоторые "S есть не-Р". Например: "Некоторые нормы права не являются нормами прямого действия. Итак, некоторые нормы права являются не нормами прямого действия".

Обращение высказывания (лат. conversio) - логическая операция, в результате которой субъект зародыше становится предикатом вывода, а предикат зародыше становится субъектом заключения. При обращении необходимо заметить розподіленість терминов - субъекта (S) и предиката (Р) в основе для того, чтобы вывод был истинным. Если предикат, не будучи распределенным в зародыше, не является распределенным в заключении, то такое обращение называется "чистым" (лат. conversio simplex). Если предикат не является распределенным в зародыше, то в заключении он ограничивается, то есть не берется в полном объеме. Такое обращение называется "обращение высказывания через ограничения (лат. conversio per limitationem). Это требование определяется в правилах обращения:

1. Загальностверджувальне высказывания (А), в котором и субъект, и предикат являются распределенными, то есть названная в нем свойство присуще только тому классу предметов, которые мыслятся в субъекте этого высказывания, вращается на обще-утвердительное (А), следовательно, А -" А. Формальный выражение такого обращения: "Все S (только эти S) является Г. Следовательно, все Р есть S": "Все живые существа являются смертными. Итак, все, кто смертные, - живые существа".

2. Загальностверджувальне высказывания (А), в котором субъект является распределенным, а предикат не является распределенным, то есть не берется в полном объеме в этом случае, вращается на частковостверджувальне высказывания (J), то есть А -> И. Формальный выражение такого обращения: "Все S есть Р. Следовательно, некоторые Р есть S". Например: "Все адвокаты являются юристами. Следовательно, некоторые юристы являются адвокатами".

3. Загальнозаперечне высказывания (Е), в котором субъект и предикат являются распределенными, вращается на загальнозаперечне (Е), то есть Е -> Е. Формальный выражение такого обращения: "ни Одно S не есть Р. Следовательно, ни одно Р не есть 5": "ни Один мошенник не является честным человеком. Следовательно, ни один честный человек не является мошенником".

4. Частковостверджувальне высказывания (J), в котором субъект и предикат не распределены, вращается на частковостверджувальне высказывания (/), не меняя в заключении объем предиката: И -> И. Формальный выражение такого обращения: "Некоторые S есть Р. Следовательно, некоторые Р есть S". Например: "Некоторые украинские спортсмены являются чемпионами Олимпийских игр. Итак, некоторые чемпионы Олимпийских игр являются украинскими спортсменами".

5. Частковостверджувальне высказывания (И), в котором субъект и предикат не распределены, вращается на загальностверджувальне высказывания (А), где предикат полностью входит в объем субъекта, то есть И -> А. Формальный выражение такого обращения: "Некоторые S (и только S есть Р. Следовательно, все Р есть "Некоторые растения являются деревьями. Итак, все деревья являются растениями".

6. Частковозаперечне высказывания (О), что имеет формальное выражение "Некоторые S не есть Р", не вращается, поскольку, по принципу логического следования, истинность заключения не следует с необходимостью, то есть заключение может быть как истинным, так и ложным.

Противопоставление предикатові (лат. contrapositio praedica-tum) - логическая операция, в результате которого в заключении субъектом становится срок, что противоречит предикатові зародыше, а предикат - субъект зародыше. Операция противопоставления предикатові - это единство операции преобразования и обращения высказывания. Она осуществляется по правилам, которые применяют во время выполнения этих операций.

1. Загальностверджувальне высказывания (А) вследствие противопоставления предикатові становится загальнозаперечним высказыванием (Е): А -" Е. Формальный выражение: "Все S есть Р. Следовательно, ни одно не Р не есть S". Например: "Все тигры являются хищниками. Итак, никакой не хищник не является тигром".

2. Загальнозаперечне высказывания (Е) путем противопоставления предикатові становится частковостверджувальним (И): Е -> И. Формальный выражение: "ни Одно S не есть Р. Итак, некоторые не Р есть "ни Один диктаторский режим не является прогрессивным. Итак, некоторые непрогресивні режимы являются диктаторскими".

3. С частковостверджувального высказывания (7), что имеет формальное выражение: "Некоторые S есть Р", вследствие противопоставления предикатові, вывод не выводится.

4. Частковозаперечне высказывания (О) через противопоставление предикатові становится частковостверджувальним высказыванием: О -> 7. Формальный выражение: "Некоторые S не есть Р. Итак, некоторые не Р есть 5". К примеру: "Некоторые предложения не выражают высказывания. Итак, некоторые высказывания не являются предложениями".

Простой категорический силлогизм - вид дедуктивного умозаключения, состоящего из двух предпосылок и вывода, каждый из которых являются простыми категорическими (атрибутивными) высказываниями, которые имеют формальное выражение вроде "Все S есть Р(А)"; "ни Одно S не есть Р(Я)"; "Некоторые S есть Р(/)"; "Некоторые S не есть Р(О)". Два основания и один вывод, которые имеют выражение А, Е, И, О, создают структуру простого категорического силогизма.

Категорический силлогизм строится по принципу: "Все, что утверждается или отрицается относительно определенного класса в целом, утверждается или отрицается относительно каждого элемента, входящего в этот класс". Например: "Все граждане Украины имеют право на правовую помощь. Н. - гражданин Украины. Следовательно, Н. имеет право на правовую помощь".

Составными частями простого категорического силогизма есть сроки, фигуры, модусы.

Термины обозначают понятия, которые входят в структуру трех высказываний, которые являются основаниями и выводом простого категорического силогизма. Различают три термина: меньший термин (лат. terminus minor) обозначает понятие, являющееся субъектом заключения (S), на основании чего определяется его место в засновках; больший срок (лат. terminus major) обозначает понятие, являющееся предикатом заключения (Р), на основании чего определяется его место в засновках. Меньший и больший термины, которые входят в два основания, называются крайними терминами; средний термин (лат. terminus medius) - термин, обозначающий понятие, что входит в структуры двух предпосылок и отсутствует в заключении. Средний термин обозначается символом М. Значение среднего термина заключается в том, что он связывает в засновках меньший и больший термины и дает возможность сделать вывод.

Цель, в которой содержится больший термин (Р), называется большим основанием, а цель, в которой содержится меньший термин (S), называется меньшим основанием.

Определим сроки и структуру силогизма на таком примере.

Все субъекты правоотношений (М) являются носителями юридических прав и обязанностей (Г). Физическое лицо (S) является субъектом правоотношений (М). Следовательно, физическое лицо (S) является носителем юридических прав и обязанностей (Г).

Меньший термин - субъект заключения: физическое лицо (5). Больший термин - предикат заключения: носитель юридических прав и обязанностей (Г). Средний срок: субъект правоотношений (М).

Структура этого силогизма:

Фигуры простого категорического силогизма означают разновидности построения силогизма зависимости от того, какое место в засновках занимает средний термин (М) - место субъекта (5) или предиката (Р). Различают четыре фигуры. Схематически они имеют такой вид:

1. Первая фигура: средний термин (М) является субъектом (S) во втором зародыше и предикатом (Р) в первом зародыше. (Приведенный нами пример построен по первой фигуре).

2. Вторая фигура: средний термин (М) является субъектом (S) в первом зародыше и предикатом (Р) во втором зародыше.

3. Третья фигура: средний термин (М) является субъектом (S) в первом и предикатом (Р) во втором засновках.

4. Четвертая фигура: средний термин (М) является субъектом (S) в первом зародыше и предикатом (Р) во втором зародыше.

В простом категорическом силлогизме вывод заключения из двух предпосылок осуществляется по правилам, к которым относятся правила терминов, правила предпосылок, правила фигур.

Правила терминов:

1. В категорическом силлогизме должно быть три термина (лат. medius, major et minor). В связи с нарушением этого правила возникает ошибка "учетверения термина" (лат. guaternio terminorum). Она определяется логико-семантического анализа высказываний (два основания и вывод), в которых оказываются разные по смыслу термины, или когда один из терминов силогизма имеет два разные смыслы. Например, в силлогизме: "Логика (Г) изучает формы и законы правильного мышления (Г) ". Теория умозаключения (S) - часть логики (М). Итак, теория умозаключения (S) изучает формы и законы правильного мышления (Г) " - средний срок (М) обозначает два различных понятия: "логика" и "часть логики", вследствие чего возникает четыре срока.

2. Средний термин (М) должен быть распределенным хотя бы в одном из оснований, то есть он должен мыслиться в полном объеме (см. 3.4.2).

3. Крайний термин, не распределенный в засновках, не может быть распределенным в заключении.

Правила предпосылок:

1. Из двух предположений простого категорического силогизма хотя бы один должен быть стверджувальним высказыванием, поскольку из двух отрицательных предпосылок вывод необходимо не следует.

2. Если одно из оснований - оспаривающее его высказывания, то и вывод должен быть отрицательным.

3. Хотя бы одно из оснований должен быть общим высказыванием, поскольку из двух частных высказываний вывод необходимо следует.

4. Если одно из оснований - частичное высказывания, то и вывод должен быть частным.

Правила фигур.

Каждая фигура имеет свои правила, которые обеспечивают правильность выведения заключения из двух предположений.

Правила первой фигуры: 1. Больший цель должен быть общим (стверджувальним или отрицательным) высказыванием. 2. Меньший цель - стверджувальним высказыванием.

Правила второй фигуры: 1. Больший цель должен быть общим высказыванием. 2. Одно из оснований - отрицательным высказыванием.

Правила третьей фигуры: И. Меньший цель должен быть стверджувальним высказыванием. 2. Вывод должен быть частным высказыванием.

Правила четвертой фигуры: 1. Если больший цель - утвердительное высказывание, то меньший цель должен быть общим высказыванием. 2. Если одно из оснований - оспаривающее его высказывания, то другой цель должен быть общим высказыванием.

На основании правил сроков, оснований и фигур категорического силогизма можно логически проанализировать конкретные силлогизмы и установить правильность или неправильность вывода заключения из оснований, в частности софизмов, особенность которых заключается в умышленном нарушении законов и правил вывода. Это правило нарушается в древнегреческом софізмі "рогатый": "То, что ты не потерял, ты имеешь. Ты не потерял рога. Следовательно, ты имеешь рога". Логический анализ этого силогизма свидетельствует, что в первом зародыше существует неопределенность среднего термина, то есть четко не сказано, что ты потерял и, соответственно, можно представить потерю чего угодно, в том числе рогов; оба основания негативны высказываниями, а по правилам вывода, из двух отрицательных предпосылок вывод не следует.

Модусы простого категорического силогизма - разновидности фигур силогизма (формы построения силогизма), которые отличаются по количеству и качеству высказываний, что является двумя основаниями и выводом. Поскольку простой категорический силлогизм состоит из трех высказываний, то модус обозначается тремя символами, которые, соответственно, обозначают больший цель, меньший цель и вывод, каждый из которых определяется как обще-утвердительное высказывание (А), загальнозаперечне (£), частковостверджувальне (7), частковозаперечне (О). Следовательно, модусы обозначаются символами А, Е, И, О.

Модусы определяют правильность выведения заключения из предположений. В связи с этим различают правильные и неправильные модусы простого категорического силогизма.

Правильным называется модус, что соответствует принципу логического следования - из истинных предпосылок следует истинный вывод, а неправильным является модус, который не соответствует этому принципу. Подсчитано, что общее количество модусов для четырех фигур - 256, из них правильными являются 24 модусы. Каждый правильный модус имеет полное название на латинском языке, а сокращенная запись состоит из трех гласных букв этого названия.

Модусы первой фигуры: Barbara (AAA); Barbari (ААІ); Celarent (ЕАЕ); Celaront (ЕАО); Darii (All); Ferio (ЕЙ).

Модусы второй фигуры: Cesare (ЕАЕ); Cesaro (ЕАО); Camest-res (АЕЕ); Camestrop (ИЛИ); Festino (ЕЙ); Baroko (АОО).

Модусы третьей фигуры: Darapti (ААІ); Disamis (ІAl); Datisi (All); Felapton (ЕАО); Bocardo (OAO); Ferison (EIO).

Модусы четвертой фигуры: Bramantip (ААІ); Camenes (АЕЕ); Carneaos (AEO); Dimaris (IAI); Fesapo (ЕАО); Fresison (ЕЙ).

Приведем примеры простых категорических силогізмів за четырьмя фигурами:

Первая фигура. По ней строится силлогизм, в котором из общего теоретического положения (закона, принципа, аксиомы, правила), а также теоретического обобщения об определенном классе предметов делается вывод о отдельный предмет данного класса; про отдельный случай из совокупности N. Например: "Все учащиеся (М) изучают математику (Г). O. (S) ученик (М). Итак, O. (S) изучает математику (Г)".

Вторая фигура. По ней строится силлогизм, когда определяется, что определенное теоретическое положение или отдельный случай противоречит другому теоретическому положению или другим случаям из совокупности N. Например: "В багатозначній логике (Г) высказываниям приписывается п > 2 істиннісних значений (М). В традиционной логике (5) высказыванием не приписывается п > 2 істиннісних значений (М). Итак, традиционная логика (5) не является многозначной (Г)".

Третья фигура. По ней строится силлогизм, когда устанавливается частичная совместимость признаков, относящихся к одному предмету мысли. К примеру: "Разработка новых языков программирования (М) имеет целью совершенствование диалога с ЭВМ (Г). Разработка новых языков программирования (М) являются интеллектуальными действиями программистов (5). Итак, некоторые интеллектуальные действия программистов (5) имеют целью совершенствование диалога с ЭВМ (Г)".

Четвертая фигура. Например: "Некоторые художественные произведения (Р) являются философскими произведениями (М). Философские произведения (М) формируют мировоззрение человека (5). Итак, некоторые произведения, которые формируют мировоззрение человека (5), являются художественными произведениями (Г)".

В символической логике была осуществлена формализация простого категорического силогизма средствами современной формализованного языка (см. 4.2.2).

Сокращенные и сложные силлогизмы

Сокращенный силлогизм (лат. Syllogismus contractus) - силлогизм, в котором отсутствует одна из его составных частей - одно из оснований или вывод. Обозначается термином "ентимема" (греч. inthymema - мысленно, мысленно). Например: "Логика - наука, следовательно она имеет прикладное значение".

Для проверки правильности вывода заключения из основателей сокращенный силлогизм восстанавливается в полный силлогизм и проверяется по правилам терминов, предположений и фигур простого категорического силогизма. В приведенном примере отсутствует больший цель, в котором сформулировано общее теоретическое положение: все науки имеют прикладное значение.

Восстанавливаем приведенную ентимему в полный силлогизм и проверяем его правильность: "Все науки (Г) имеют прикладное значение (Р). Логика (5) - - наука (М). Итак, логика (5) имеет прикладное значение (Р)".

Сложный силлогизм (полісилогізм) создается в результате соединения двух и более силогізмів, в котором заключение одного силогизма (просилогізм) становится одним из основателей другого силогизма, который имеет название "епісилогізм" (греч. ері - на, над, при, после и ... силлогизм). Разновидностью сложного силогизма есть сорит и епіхейрема.

Сорит (греч. sorites - накопленный) - складноскорочений силлогизм, в котором пропущены промежуточные основания и приведен вывод последнего силогизма. Например: 1. "Все имена собственные пишут с большой буквы. Названия рек относятся к собственным именам. Итак, названия год пишут с большой буквы"; 2. "Названия год пишут с большой буквы. "Днепр" - название реки. Итак, "Днепр" пишут с большой буквы"; 3. "Все имена собственные пишут с большой буквы. Названия рек относятся к собственным именам. "Днепр" - название реки. Итак, "Днепр" пишут с большой буквы".

Епіхейрема (греч. epiheirema - умозаключение) - складноскорочений силлогизм, в котором первый и второй цель составляют ентимему (сокращенный силлогизм). Например: 1. "Все противоправные деяния подлежат наказанию. Загрязнение окружающей среды - противоправное деяние. Следовательно, загрязнение окружающей среды подлежит наказанию". Строим ентимему: "Загрязнение окружающей среды подлежит наказанию, поскольку оно является противоправным деянием". 2. Любое загрязнение окружающей среды - это противоправное деяние. Выброс неочищенных стоков в реку - это противоправное деяние. Следовательно, выброс неочищенных стоков в реку подлежит наказанию". Строим ентимему: Выброс неочищенных стоков в реку подлежит наказанию, поскольку оно является противоправным деянием".

Епіхейрема: 1. "Загрязнение окружающей среды подлежит наказанию, поскольку оно является противоправным деянием". 2. Выброс неочищенных стоков в реку подлежит наказанию, поскольку оно является противоправным деянием. Следовательно, обращение неочищенных стоков в реку подлежит наказанию".

Другие виды силогізмів

Условный силлогизм (імплікативний) - силлогизм, в котором два основания и вывод являются условными высказываниями; то же, что гипотетический силлогизм. Формальный выражение условного силогизма: ((А -> В, В ->С)) -" (А -> С). Например: "Если у меня будет свободное время, то я пойду в театр. Если я пойду в театр, то буду смотреть балет. Следовательно, если у меня будет свободное время, то я буду смотреть балет".

Условно-категорический силлогизм - силлогизм, в котором одно из оснований - условное высказывание, другой цель и вывод - категорические высказывания. Условно-категорический силлогизм имеет два модусы: утвердительный (лат. modus ponens - утверждение) и заперечувальний (лат. modus tollens - отрицание), каждое из которых имеет правильную и неправильную форму построения. Правильная форма предусматривает вывод истинного заключения из истинных предпосылок, а неправильная форма этого не предусматривает.

1. Правильная форма утвердительного модуса - от утверждения антецедента А во втором основе до утверждения консеквента В в заключении. Формальный выражение (А -> В, А) -> В. Например: "Если студент Я. учит науку логику, то он повышает культуру своего мышления (А -"). Студент Я. учит логику (А). Итак, студент Я. повышает культуру своего мышления (ву

2. Неправильная форма утвердительного модуса - от утверждения консеквента В во втором основе до утверждения антецедента А в заключении. Формальный выражение (А -> В, В) -> А: "Если студент Я. знает теорию, то он решит эту логическую задачу (А ->). Студент Я. решил эту логическую задачу (В). Итак, студент Я. знает логическую теорию (А)",

В этом примере вывод не следует с логической необходимостью, а только с вероятностью, поскольку заключение может быть как истинным, так и ложным (Студент Я. может решить логическую задачу, не зная теории, скажем, он спишет со шпаргалки или кто-то ему подскажет правильное решение задачи).

3. Правильная форма .ш возражаю тельного модуса - от отрицания консеквента В во втором основе к отрицанию антецедента А в заключении. Формальный выражение (А -> В,- * В) -> -"А. Например: "Если лицо Я. придерживается определенных норм права в своих деяниях, то она является правослухняною (А ->). Лицо Я. не является правослухняною (->). Следовательно, лицо Я. не придерживается определенных норм права в своих деяниях (-" А)".

4. Неправильная форма отрицательного модуса - от отрицания антецедента А во втором основе к отрицанию консеквента В в заключении. Формальный выражение (А ->,- "А) -> -" В. Например: "Если погода хорошая, то самолеты взлетают (А ->). Сегодня нехорошая погода (-" А). Следовательно, самолеты не будут взлетать (-<)".

В этом примере вывод не следует с логической необходимостью, поскольку вывод может быть и истинным, и ложным (самолет не может взлетать и по другим причинам).

Разделительно-категорический силлогизм - - силлогизм, в котором первый из оснований является разделительным (диз'юнктивним) высказыванием, а второй цель и вывод - категорические высказывания. Разделительно-категорический силлогизм имеет два модусы: утверждающе-заперечувальний (modus ponendo tollens) и заперечувально-утвердительный (modus tollende ponens).

Правильная форма построения разделительно-категорического силогизма предусматривает вывод истинного заключения из истинных предпосылок, а неправильная форма построения не предусматривает вывода истинного заключения из истинных предпосылок.

1. Разделительно-категорический силлогизм с утвердительно-отрицательным модусом - от утверждения одного из диз'юнктів (простого высказывания в разделительном высказывании) во втором основе к отрицанию другого диз'юнкта в заключении. Формальный выражение (А 1, А) -> (А 1 В, В) -> А. Например: "По форме государственного устройства государства являются либо унитарными, либо федеративными (A JL). Франция по форме государственного устройства - унитарное государство (А). Итак, Франция по форме государственного устройства не является федеративным государством (-" В)".

2. Разделительно-категорический силлогизм с заперечувально-стверджувальним модусом - от отрицания одного из диз'юнктів во втором основе до утверждения другого диз'юнкта в заключении. Формальный выражение (А 1 В, -"А) -> (A L, " В) А: "Человек учится или на своих ошибках или на чужих (А 1 В). Лицо Я. не учится на чужих ошибках (-"). Следовательно, лицо Я. учится на своих ошибках (А)".

Условно-разделительный (лематичний) силлогизм

(Греч. lemma - ссылка) - силлогизм, в котором одно из оснований является условным высказыванием, два других - разделительные (дизъюнктивные) высказывания, а вывод является категорическим высказыванием или разделительным (диз'юнктивним) высказыванием. Правильная форма построения условно-разделительного силогизма обеспечивает вывод истинного заключения из истинных предпосылок.

Условно-разделительный силлогизм имеет разновидности: дилемма, трилема.

Дилемма (греч. di(s) - дважды и lemma - предположение) - условно-разделительный силлогизм, в котором два основания составляют условные высказывания, третий цель - разделительное высказывание, а вывод - простое категорическое высказывание или разделительное высказывание. Дилемма делится на конструктивную и деструктивную, каждая из которых в свою очередь делится на простую и сложную.

1. Простая конструктивная дилемма - условно-разделительный силлогизм, который строится по схеме (А -> В, С -> A v С) -> В. Например: "Если лицо У. хочет поступать на физический факультет университета, то она должна хорошо знать математику (А ->). Если лицо У. хочет поступать на химический факультет университета, то она должна хорошо знать математику (С-"). Лицо У. хочет поступать на физический или химический факультет университета (A v С). Следовательно, лицо У. должна хорошо знать математику (В)".

2. Сложная конструктивная дилемма - условно-разделительный силлогизм, который строится по схеме (А -> В, С -> D, A v С) -> (v D): "Если Вы будете говорить правду, люди проклянут вас (А ->). Если Вы будете обманывать, то Вас проклянут боги (С -" D).

Но Вы можете говорить только правду или обманывать (A v С). Итак, Вас проклянут люди или боги (В v D)".

3. Простая деструктивная дилемма - условно-разделительный силлогизм, который строится по схеме (А -", А -> С; -> В v-o С) -> -" А Например: "Если лицо Я. совершила кражу, то он нарушил правовую норму (А ->). Если лицо Я. совершила кражу, то она нарушила моральную норму (А -> С). Лицо Я. не нарушил правовую норму или не нарушила моральную норму (-o В v-С). Следовательно, лицо Н, не совершившего кражу (-o А)".

4. Сложная деструктивная дилемма - условно-разделительный силлогизм, который строится по схеме (А -> В, С -> D; -" В v -" D)

-> (-" A v -" С): "Если обвиняемый Л. убил К. случайно, то, по ст. 119 УКУ, - это убийство по неосторожности (А -"). Если обвиняемый Л. убил К. с целью ограбления, то, по ст. 115 УКУ, это является умышленным убийством (С -> D). Но неправильно, что убийство К. обвиняемым Л. по своим признакам классифицируется по ст. 119, или по ст. 115 УКУ (-^Bv D). Значит, неверно, что обвиняемый Л. должен быть осужден за случайное убийство К. или с целью ограбления (и A v С)".

Трилема (греч. trias - три, lêmma - цель) - сложное диз'юнктивне высказывание, которое состоит из трех простых высказываний (диз'юнктів). Формальный выражение A v В v С Разновидность условно-разделительного силогизма, в котором три основания являются условными высказываниями, четвертый цель - разделительное высказывание, а вывод - также разделительное высказывание. Схема вывода: (А -> В; С -> D Е -> F; A _L С 1 Е) -> -> (В X D 1 F). В известной сказке о богатыре, который стоял на распутье, есть такая трилема: "Если направо пойдешь, то гибель найдешь (А ->). Если налево пойдешь, то коня потеряешь (С-> D). Если прямо пойдешь, то в плен попадешь (Е -> F). Но идти можно или направо, или налево, или прямо (ЛЕСУ Е). Итак, можно или погибнуть, или коня потерять, или в плен попасть (В LD L FY*.

Индуктивное умозаключение (индукция)

Индукция (лат. inductio - выведение) - движение соображений от единичного к частному, от частного к общему; разновидность умозаключения, в котором вывод делается на основании обобщения наблюдаемых фактов; вероятностный, правдоподобный вывод.

Учение о индукции, ее познавательное и эвристическое значение разрабатывали Аристотель, Ф. Бэкон (1561-1626), Дж. Ст. Милль (1806 1873), другие логики и философы. Исторически учение о индукцию выделилась в определенное направление логических исследований, получивший название - "индуктивная логика".

В XX в. учение о индукцию стало развиваться в контексте вероятностной логики, соответственно, срок "индукция" приобрел нового смысла.

Вероятностная логика - особое направление современной логики, исследующий вероятностные высказывания; модальная система (теория) с модальностью "вероятно", которая определяет логическую функцию вероятности, устанавливает правила построения вероятностных выводов в индуктивных умозаключениях и умозаключениях по аналогии.

Основным сроком вероятностной логики есть "вероятность".

Он имеет много смыслов в зависимости от контекстов использования. Определим его логический смысл в контексте вероятностной логики.

Вероятность - свойство отдельного высказывания или совокупности высказываний иметь определенную степень истинности (правдоподобия, возможности), в пределах от значения ложности (0) до значения истинности (1). Степень истинности высказывания от 0 до 1 имеет формальное выражение 0 < Г < 1, где Р - символ, обозначающий вероятность истинности (правдоподобия) высказывания. Высказывания с таким свойством выражается словами (модальностями) "вероятно", "вероятно", "мало вероятно" ("вероятно, что А", "мало вероятно, что В") и составляет объект исследования вероятностной логики: "Маловероятно, чтобы лицо Г. достигла своей цели"; "Вероятно, что эксперимент, который провели физики, подтвердит эту гипотезу".

Вероятностное умозаключение - умозаключение, в котором вывод из определенных предпосылок не следует с необходимостью, а лишь подтверждается ими. Такой вывод называют вероятностным, или правдоподобным. Отношение между основаниями и выводом в вероятностном умозаключении называется отношением подтверждение, или предполагаемого (возможного) следования В из А. Отношение подтверждение обозначается символом И ". Формальный выражение такого отношения А (а., а2,... ая) 1", где А (а,, а2,... ап) - цель, В - заключение, |" - символ подтверждения или вероятностного следования (пошлин.: В подтверждается основанием А (а,, а2,... ая).

Различают формальную и неформальную построение вероятностного умозаключения и подтверждение истинности заключения в интервале от 0 (плохо) до 1 (истинно). Формальное выведение заключения из зародыше и подтверждение истинности заключения определяется методами современной символической логики. Неформальное выведения заключения из предположений имеет место в индуктивном умозаключении и умозаключении по аналогии.

Индукция - умозаключение, в котором вывод о классе предметов А делается на основании знания об отдельных предметах (элементы) этого класса, которым присуще свойство Р, или про отдельные случаи. Знания об отдельных предметах класса или о частных случаях формально изображают языке традиционной логики:

Образец:

Для того, чтобы прийти к выводу о класс предметов А на основании пересчета отдельных предметов 5,, 52,... 5л (элементов класса А), которым присуще свойство Р, следует придерживаться таких правил: 1. Все перечисленные предметы должны принадлежать к одному классу. 2. Стоит брать как можно больше предметов этого класса, которым присуще свойство Р. 3. При перечня отдельных предметов, которым присуще свойство Р, не должно быть противоречивого случая, т.е. нужно назвать предметы, которым это свойство Р не присуща.

Общая схема индуктивного умозаключения:

1. Утверждение о наличии признака Г. 2. Возражения о наличии признака Р:

Вероятность заключению в индуктивном умозаключении (подтверждение заключения В основаниями А ($,, S2,... Sn) повышается при следующих условиях: 1) целесообразно определять как можно больше свойств у предметов, относящихся к определенному классу; 2) свойства должны быть существенными; 3) свойства должны быть разнообразными.

Виды индукции.

Индукция (индуктивное умозаключение) делится на полную и неполную. Неполная индукция в свою очередь делится на популярную, статистическую, научную.

Полная индукция (completa inductio) умозаключение, в котором общий вывод относительно свойств, присущих определенному классу А в целом, осуществляется на основании перечня всех элементов этого класса. Особенность полной индукции состоит в том, что на ее основании можно получить истинный вывод, но при условии точного определения всех элементов исследуемого класса. Например: "Деймос не имеет атмосферы. Фобос не имеет атмосферы. Деймос и Фобос являются естественными спутниками Марса. Итак, все естественные спутники Марса не имеют атмосферы".

Схема вывода этого вывода по полной индукцией:

Неполная индукция - умозаключение, в котором общий вывод относительно свойств, присущих определенному классу А, осуществляется на основании выявления этих свойств лишь в определенной части этого класса, соответственно, вывод является вероятностным.

Схема вывода вывода по неполной индукции:

Неполная индукция делится на популярную, статистическую, научную.

Популярная индукция, или "индукция через простой перечень" (inductio per enumerationem simplicem) - индукция, сущность которой заключается в том, что на основании простого перечня определенного количества спостережувальних случаев делается общий вывод за отсутствия спорного случая. Такой вывод по степени подтверждения истинности заключения из заданных предпосылок варьируется от 0 до 1; соответственно, для повышения вероятности выводов следует увеличить количество спостережувальних случаев. Популярная индукция является методом обобщения спостережувальних человеком отдельных случаев (явлений, процессов, событий, поведения лиц, практических действий и др.). Такое обобщение только определяет факт существования определенных случаев в природном и социальном мире. Например: "Золото является твердым телом. Серебро является твердым телом. Алюминий является твердым телом. Цинк является твердым телом. Золото, серебро, алюминий, цинк - металлы. Вероятно, некоторые металлы являются твердыми телами".

Если на основании приведенных оснований прийти к выводу: "Следовательно, все металлы являются твердыми телами", то он будет неверным, поскольку противоречит тому факту (случае), что существуют металлы, которые не являются твердыми телами, скажем, ртуть.

Статистическая индукция (селекционная) - умозаключение, в котором вывод осуществляется в отношении определенного класса предметов на основании получения информации о частоте распределения определенного свойства для этого класса. Такой класс называется популяцией, а отделенный для исследования подкласс - выборке (пробе, образцом). Например: "Надо определить влажность зерна, что поступила на приемный пункт. Из общего количества зерна взяли определенное количество зерна и проверили ее влажность (выборка). Установлено, что влажность этой выборки равна 10 % (условно). Вероятно, влажность общего количества зерна равна 10 %".

Научная индукция - логический метод теоретического обобщения эмпирических исследований (результатов научных наблюдений и экспериментов над определенными предметами, явлениями, процессами), на основании чего ученые обнаруживают определенные закономерности функционирования и развития природных и социальных систем, формулируют научные законы (о научную индукцию и методы установления причинно-следственных связей (см. 6.1).

Логические ошибки в индуктивных умозаключениях возникают вследствие нарушения правил логического обобщения фактических данных.

"Поспешное обобщение" (fallacia fictae universalitatis) - логическая ошибка в индуктивных умозаключениях, которая возникает, когда признаки, присущие отдельным элементам определенного класса А, переносят на весь класс А. Скажем, на основании наблюдения отдельных негативных случаев (пьянство, мошенничество, нарушение правил общественной жизни и т.п.), что допускают отдельные индивиды в социальной сфере (в быту, семье, учебе, трудовой деятельности и др.), делается вывод о весь класс людей ("Все люди пьют"; "Все - мошенники"; "Все нарушают правила"...).

"После этого, следовательно, по причине этого" (post hoc ergo propter hos) - логическая ошибка в индуктивных умозаключениях, когда смешивают причинно-следственные связи между явлениями с временной последовательности между ними, то есть когда явление В следует во временном измерении за явлением А, то явление А определяют как причину явления.

Шутливый пример такой ошибки приводит чешский писатель Я. Гашек. "Однажды появилось на солнце пятно, в то же время меня избили в трактире "В Банзетів". С тех пор перед тем как куда-то пойти, я смотрю в газету, не появилась ли снова какая-то пятно. Если появляется пятно - "прощаюсь, ангел мой, с тобой", никуда не хожу и перечікую" ("Похождения бравого солдата Швейка").

Примером ошибки "После этого, следовательно, по причине этого" есть народная примета: "Зустрінем утром черного кота, днем случится несчастье".

Единство дедукции и индукции.

Эти понятия в мисленневій деятельности людей находятся в единстве, и в реальном процессе рассуждений индивидов не существуют друг без друга. В абстрактном смысле дедукцию можно рассматривать как обобщенную до уровня общего знания индукцию, а индукцию как наведение совокупности знания на основании спостережувальних фактов до уровня дедукции, когда, не обращаясь к чувственному опыту, можно экстраполировать общее знание различных направлений познания.

В умственной деятельности человека, субъекта познания и практических действий, дедукция предстает как движение соображений на основании общего теоретического знания, что человек усвоил в процессе обучения, профессионального образования и др. Это общее знание она активизирует и логично связывает с единичным, когда наблюдает в реальном мире отдельные явления, процессы, действия и события, которые происходят вследствие этих действий (факты из жизни), и в свою очередь, на основании собственного наблюдения фактов, приходит к выводам, которые приобретают формы обобщенного знания.

Итак, уметь осознанно общее (теоретическое) знание использовать в единичных фактов и делать теоретическое обобщение (выводы) на основании спостережувальних фактов, - это сущность дедуктивного и индуктивного методов в их единстве.

Умозаключение по аналогии (аналогия) - умозаключение, в котором на основании установления сходства (за отдельными признаками) определенных предметов а и b или класса предметов А и В, делается вывод, что признак Р9 присуща отдельному предмету а, может быть присуща предмету Ь; признак, присущий классу А, может быть присуща и класса В; на основании установления сходства определенных отношений между предметами а и в и предметами cid приходят к выводу, что определенное отношение между предметами а и Ь присуще также предметам cid; определенное отношение между классами А и В присуще и классам С и D.

Различают два вида умозаключений по аналогии:

1. Умозаключение по аналогии свойств, который делается на основании установления сходства классов А и В с множественностью общих признаков и предположение, что признак Р, присуща класса А, вероятно, присуща класса В.

Структура умозаключения по аналогии: основания - высказывания вроде: класс А имеет множественность признаков Р (а, b, с,... d); класс В имеет признаки Р, (а, Ь,... d); вывод - вероятно, класс В имеет признак с.

Схема умозаключения по аналогии свойств:

Схема умозаключения по аналогии свойств

2. Умозаключение по аналогии отношений делается на основании установления сходства отношение между классами А и В и классами С и Б и предположение, что отношение К2 между классами А и В, вероятно, присуще классам С и И.

Схема умозаключения по аналогии отношений:

Схема умозаключения по аналогии отношений

В умозаключениях по аналогии вывод является вероятностным, что означает: из истинности предположений не следует с необходимостью истинность заключения, а лишь подтверждает его с определенной степенью вероятности в пределах (0 > Р (В) < 1).

в Зависимости от степени подтверждения выводу из предпосылок аналогия делится на строгую, нестрогу, ложную.

Строгая аналогия - вывод делают на основании разделения существенных и необходимых признаков у классов А и В и переноса таких признаков из класса А в класс В. Вывод по этой аналогии подтверждается по степени вероятности и равна 1 (истинно).

Примером строгой аналогии математические аналогии.

Н эст рога аналогия - вывод делается на основе обособления необходимых, но недостаточных признаков у классов А и В и переноса таких признаков из класса А в класс В, соответственно, вывод подтверждается степенью вероятности в пределах (0 > Р (В) < 1). Например: Для игры в баскетбол подбирают высоких парней и девушек. "Ирина - высокая баскетболистка, которая всегда точно забрасывает мяч в корзину. К команде, где играет Ирина, взяли новую баскетболистку Наталью. Она высокого роста. Вероятно, Наталья также будет точно забрасывать мяч в корзину". Вывод подтверждается с определенной долей вероятности, поскольку высокий рост для игры в баскетбол считается необходимым признаком, но недостаточной, чтобы эффективно осуществлять определенные игровые действия.

Ложная аналогия - выводу приходят на основании выделения случайных (внешних) признаков у классов А и В и переноса таких признаков из класса А в класс В, соответственно, вывод не подтверждается по степени вероятности и может равняться 0 (быть неверным). Скажем, некоторые представители криминальной антропологии на основании того, что отдельные преступники имели или имеют характерную внешность (в частности, очень узкий лоб, развитые скулы, массивную нижнюю челюсть) делали вывод по аналогии, что и другие лица, которые имеют такую же внешность, есть или станут преступниками.

Повышение вероятности вывода по аналогии достигается в случае соблюдения таких условий: 1. Нужно определять как можно больше общих признаков у классов А и В. 2. Следует определять разнообразие общих признаков. 3. Определены общие признаки должны быть необходимыми и существенными. 4. Целесообразно определить не только сходство общих признаков у классов А и В, а и разницы в признаках классов А и В.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее