Меню
Главная
Авторизация/Регистрация
 
Главная arrow Логика arrow Логика

Доказательства и опровержения

Необходимость - аідрі.тяльна свойство доказательства.

Аристотель

Manifestum поп eget probat Urne - Очевидное не требует доказательства.

Доказательство - логическая операция обоснования истинности некоторого высказывания на основании некоторых истинных высказываний; в символической логике - процесс необходимого вывода определенному выводу из оснований по принципу логического следования; логическая основание аргументации в дискурсе (лил. 7.3).

Опровержение (лат. refutatio) - - логическая операция обоснования ложности некоторого высказывания.

Структура доказательства и опровержения - тезис, аргумент, демонстрация.

Тезис (греч. thesis - положение, утверждение) - высказывания (утверждение, теоретическое положение), истинность которого нужно доказать или ложность которого стоит опровергнуть. Примеры тезисов: "Любое маленькое равна любом большом"; "Из ничего ничто не возникает"; "Все биологические виды животных эволюционируют"; "Каждое государство формирует свою правовую систему"; "Каждую не пустое множество можно вполне упорядочить".

Утверждение, теоретические положения, не требующие доказательства или опровержения, называются аксиомами. С точки зрения логики, аксиомы - это утверждения (теоретические положения), истинность которых очевидна или уже доказана. В зависимости от того, в какой системе научного или философского знания существуют такие теоретические положения, выделяют математические, логические, философские, юридические и другие виды аксиом. Поэтому в каждой науке выделяют теоретические положения, которые являются аксиомой в одной системе знания и не является аксиомой в другой системе знания.

Например, в математике аксиома евклидовой геометрии "Две параллельные прямые не пересекаются" не является аксиомой в неевклідовій геометрии.

В логике аксиомами являются логические законы (см. 3.3), но с возникновением различных типов логик определено, что определенный закон (тождественно-истинная формула) в пределах одной формально-логической системы является аксиомой, а в рамках другой - не является ею. Такое определение дается на уровне металогики (см. 4.1; 4.2).

В области права (правового знания) выделяют аксиомы, т.е. теоретические положения, которые являются істинними. их называют юридическими презумпціями: "Подсудимый невиновен, пока его вина не будет доказана судом"; "Никто не может быть наказан дважды за одно и то же преступление".

Аргумент (лат. argumentum - логический довод, основание доказательства) - истинное высказывание или несколько истинных высказываний, с помощью которых логически обосновывается истинность тезиса или ее ошибочность.

Демонстрация (лат. demonstratio - показывание) - структурная часть доказательства и опровержения, что связывает тезис и аргументы; процесс выведения тезиса из аргументов, согласно правилам в отношении тезиса и аргументов, сформулированных на основании законов логики. Демонстрация имеет логическую форму умозаключения, то есть доказательства и опровержения создаются в форме определенного вида умозаключения (дедуктивного, индуктивного, по аналогии).

Формально связь тезиса с аргументом определяют как вывод тезиса из аргументов, а именно: формула вроде 7 которая логически выводится из формулы вроде А, где Т - тезис, А - аргумент; соответственно: если А - истинно, то Т - истинная. Формальный выражение выведения тезиса из аргументов: А -> Т.

Выведения тезиса из аргументов имеет такие варианты: тезис необходимо вытекает из приведенных аргументов; тезис не необходимо (вероятно) вытекает из приведенных аргументов; тезис не следует из приведенных аргументов.

Различают обоснованность тезиса отрицания тезиса, опровержение тезиса.

1, Обоснованность тезиса означает выведение тезиса (Т) из аргумента (А) по принципу логического следования. Формально А -> Ту где -> - символ логического следования. Если А - истинно, то Т - истинное, следовательно, тезис Т - обоснованная. Например: "Число 4 является четным числом (А). Следовательно, число 4 - делимое (Т)".

2. Отрицание тезиса Т означает формулировка антитезы (-^ Т). Если из А не вытекает истинность Т, то создается антитеза -" Т и обосновывается ее истинность. Так, из законов физики (А) не следует тезис "Энергия способна куда-то исчезать". Тогда создается антитеза "Энергия не способна никуда исчезать", истинность которого обосновывается законами физики.

3. Опровержение тезиса Т означает ее отрицание (построение антитезы -" Т). Если из истинности А следует истинность антитезиса Ту то Т - ложная.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее