Меню
Главная
Авторизация/Регистрация
 
Главная arrow Логика arrow Логика

Виды парадоксов

Существуют парадоксы, которые возникают в определенной области научного знания в процессе исторического развития науки, когда обнаруживается противоречие между определенной устоявшейся системой знания и новыми фактами, между закрепленной в определенных парадигмах направлениях исследований и новыми открытиями, что не укладываются в эти парадигмы. Так, научные открытия в космологии, квантовой физике, биологии, сделанные в XX в., противоречат классическим теориям в этих отраслях наук и трактуются как парадоксальные с точки зрения классических теорий.

В каждой отрасли научного познания появляются специфические парадоксы - физические, химические, биологические, математические и др.

Парадоксы, которые возникают в рамках определенной научной теории, обнаруживают противоречивость самого движения материальных объектов, которые изучает наука, "двойственность" природы самого объекта исследования, предопределяя переосмысление фундаментальных принципов и парадигм конкретной науки. Например, в теории квантовой химии обнаружено, что электрон вокруг ядра в любой момент находится в каждой элементарной точке пространства, хотя электрон - элементарная частица.

Типы парадоксов

Парадоксы по типам логики классифицировали на семантические и логические.

Семантические парадоксы возникают в рассуждениях:

- в процессе связи выражений языка с их предметным значением, то есть денотатом;

- когда смешиваются два уровня символической репрезентации объектов соображений, а именно - уровень объектного языка и метамови;

- когда используют абстрактные, неопределенные сроки, под которые можно подвести любой объект;

- когда возникает проблема определения истинности или ложности высказываний в определенном контексте.

В семантических парадоксов относятся: парадокс "Лжец", гетерологічний парадокс, парадокс теории имен, парадокс (антиномия) отношение наименования.

Парадокс "Лжец" логики классифицируют как антиномию. Его впервые сформулировал древнегреческий философ Эвбулид из Милета, и он имеет два варианта выражения: 1. Кое-кто говорит "Я вру"; 2. Критянин Эпименид сказал: "Все критяне - - лжецы".

Смысл парадокса "Лжец" заключается в том, что нельзя однозначно определить истинность или ложность высказывания "Я вру". Так, если Эпименид не врет, то его высказывание истинно и, следовательно, Эпименид-лжец; если Эпименид лжет, то его высказывания - ложное, следовательно, Эпименид не лжец. Получаем антиномию - "Эпименид лжет и не лжет", или "Высказывания "Я вру" истинное, поскольку оно ложно, и ложное, поскольку оно верно".

Другую модификацию парадокса "Лжец" сформулировал английский логик П. Журден: "Высказывание, написанное на первом стороне этой карточки, - истинное; а на другой стороне той же карте написано: Высказывание, написанное на другой стороне этой карточки, - ложное". Если первое высказывание истинно, то второе высказывание также истинно, поскольку в первом высказывании утверждается, что второе высказывание - истинно. Но если второе высказывание истинно, то "первое высказывание - ложное" - ошибочное. Итак, из двух возможных предположений истинности этих двух высказываний возникает противоречие.

Ученые предлагали много способов решения парадокса "Лжец". Например, польский логик А. Тарский предложил четко различать уровни языка - объектной и метамови. Именно высказывания "Я вру" сформулировано объектным языком, а то, что оно является парадоксальным, определяется на уровне его металогічного анализа средствами метамови. Для этого стоит создать формализованную язык, который содержит высказывания А, предикат истины Г. Формула Р1 (А) г А (высказывание А-истинно, если и только если А). Это значит: высказывание А истинно тогда и только тогда, когда высказывание А истинно, то есть фиксирует (отражает) существование предмета, о котором идет речь в высказывании.

Высказывание критянина Епіменіда "Все критяне - - лжецы" также выражено объектным языком. Согласно металогічним анализом, Эпименид также является лжецом, поскольку он, как критянин, входит к классу жителей острова Крит. Если бы Эпименид не был критянином, то высказывания " Все критяне - лжецы" не было бы парадоксальным.

Гетерологічний парадокс сформулировал К. Греллінг (1886 - 1941 гг.). Это парадокс, который возникает в результате выделения таких выражений речи, как прилагательные, значением которых являются свойства, например, "красное", "новое", "старое", "украинский". Слово, которое имеет свойство Р, именем которого оно является, называется автологічним. Слово, которое не является автологічним, называют гетерологічним. Если слово (прилагательное) обозначает свойство, присущее ему самому, то его называют автологічним. Это, например, слово "украинский", а слова "белое", "черное" не являются словами автологічними, следовательно, они - гетерологічні. К какому виду слов - автологічних или гетерологичных принадлежит именно слово "гетерологічне"? Получаем антиномию: "Если слово "гетерологічне" - гетерологічне, то оно не гетерологічне, а если оно не гетерологічне, то оно гетерологічне".

Парадокс теории имен - семантический парадокс, который возник в рамках теории логической семантики, что разработали Г. Фреге, Б. Рассел, Г. Карнап и другие логики, заменяя собственное имя дескрипцией и наоборот, дескрипцію собственным именем (см. 2.2.4). Собственное имя - простой знак, которым обозначается единичный (индивидуальный) предмет. Дескрипція - сложный знак, в котором определяют свойства предмета или отношения между классами. Если в определенном контексте подменить собственное имя дескрипцией, то возникает семантический парадокс. Например, за Бы. Расселом, имя собственное "Вальтер Скотт" и дескрипція "автор "Веверлея" указывают на один предмет, соответственно, утверждение. "Король Генрих IV желает знать, является ли Вальтер Скотт автором "Веверлея" не содержит парадокса, но, если заменить имя собственное "Вальтер Скотт" дескрипцией "автор "Веверлея", то получаем утверждение: "Король Генрих IV желает знать, является ли Вальтер Скотт Вальтером Скоттом", которое парадоксальное.

Логические парадоксы - парадоксы, возникшие в пределах определенной логической теории в процессе развития науки логики. В логических парадоксов относятся парадоксы материальной импликации, парадоксы строгой импликации, парадоксы епістемічної логики, парадоксы логики существования и др. (содержание этих парадоксов будет определен в контексте анализа конкретной логической теории, где возникли эти парадоксы).

Парадокс теории классов (множеств). В логико-математической теории классов (множеств) английский логик и математик Б. Рассел обнаружил логическую противоречивость, которая получила название парадокса (антиномии) классов (множеств). Все множества можно разделить на следующие виды: 1. Множества, которые не являются элементами самих себя. Такие множества называют собственными. Например, множество всех государств, всех натуральных чисел, всех книг в научной библиотеке университета города Н. и др. 2. Множества, которые являются элементами самих себя. Такие множества называют несобственными. Первый вид множеств обозначается символом М., а второй - символом М2. Далее предполагаем, что можно образовать множество М тех и только тех множеств, которые являются собственными, то есть всех тех множеств, которые не содержат самих себя как элементы. Это множественное число - - противоречива, поскольку, по определению, она принадлежит к числу своих элементов тогда и только тогда, когда она не принадлежит к их числу.

Для решения парадокса теории множеств Бы. Рассел разработал теорию типов, сущность которой заключается вот в чем. Все множества можно разделить на типы, каждый из которых отделяет элементы, принадлежащие только к одному типу и не относятся к другому. Так создается иерархия типов множеств: нулевой тип содержит только элементы, имеющие свойство Р , первый тип содержит элементы, имеющие свойства Г.; второй тип - имеет свойства Р2 и под. Каждый тип означает определенный уровень абстрагирования и обобщения множеств: а) обычное множество; б) необычная множество (множество всех множеств), т.е. множество, которое содержит само себя в качестве элемента. К которой множества отнести множество всех обычных множеств? По мнению Б. Рассела и теория типов позволяет выделить иерархию множеств и тем самым преодолеть парадокс теории множеств.

Популярными вариантами парадокса теории множеств есть парадоксы "Мэр муниципалитета" и "Парикмахер".

Парадокс "Мэр муниципалитета" сформулировал американский логик С. Клини (1909-1994 гг.) как популярный вариант парадокса теории множеств. "Каждый муниципалитет в Голландии должен иметь мэра, и два разные муниципалитеты не могут иметь одного и того же мэра. Иногда оказывается, что мэр не живет в своем муниципалитете. Предполагаем, что издан закон, согласно которому определенную территорию выделяют только для таких мэров, которые не живут в своих муниципалитетах, и он обязывает всех мэров поселиться на этой территории. Еще допустим, что этих мэров оказалось столько, что эта территория Н. образует муниципалитет. Где должен жить мэр муниципалитета Я.?"

Парадокс "Парикмахер" - второй популярный вариант парадокса теории множеств. "Парикмахер бреет тех и только тех мужчин одного поселка, которые не бреются сами. Или парикмахер бреет самого себя?"

Список рекомендуемой литературы

Аристотель. Сочинения: В 4 т. - М., 1978. Белнап Н., Стил Т. Логика вопросов и ответов. - М., 1981. Войшвилло Е. Понятие как форма мышления. - М., 1989. Г. фон Вригт. Гетерологический парадокс // Логико-философские исследования. - М., 1986.

Жоль К. Вступление к современной логики. - К., 1992.

Ивин А. Искусство правильно мыслить. - М., 1986.

Ивин А. Логика. - К., 1996.

Кайберг Г. Вероятность и индуктивная логика. - М., 1978. Кант И. Сочинения: В 6 т. - М., 1964. Конверский А. Логика (традиционная и современная). - К., 2004. Кондаков Н. Логический словарь-справочник. - М., 1975. Лейбниц Г. Сочинения: В 4 т. - М., 1984. Логический словарь "Дефорт". - М., 1994. Минто В. Дедуктивная и индуктивная логика. - С.-Пб., 1995.

Фреге Г. Логика и логическая семантика. - М., 2000. Хоменко И. Логика для юристов. - К., 2001. Шуман А. Современная логика: Теория и практика. - М., 2004.

Kotarbinski Т. Kurs logiki. - Warszawa, 1955.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее