Строение

Стереоизомерия

В большинстве a-аминокислот (за исключением глицина) a-углеродный атом хирален. Это обусловливает существование их в виде двух оптических изомеров - R- и S-энантиомеров, или, по устаревшей номанклатуре D- и L-энантиомеров. Примечательно, что все природные аминокислоты, входящие в состав белков, принадлежат L-ряду.

Цвиттер-ионная структура

Присутствие в молекулах аминокислот функциональных групп кислотного (СООН) и основного (NH2) характера обусловливает амфотерность этих соединений. В водном растворе алифатические аминокислоты существуют в виде равновесной смеси биполярного иона (его называют цвиттер-ионом), катионной и анионной формы. Положение равновесия зависит от рН среды и строения аминокислоты - главным образом от наличия в составе молекулы дополнительных кислотных или основных центров. Значение рН, при котором концентрация биполярных ионов максимальна, катионная и анионная формы находятся в равных и минимальных концентрациях, называется изоэлектрической точкой (рI). Каждая аминокислота имеет индивидуальное значение рI. В этой точке суммарный заряд молекулы равен 0 и биполярные ионы не перемещаются в электрическом поле. При рН ниже pI катион аминокислоты (аммониевая форма) движется к катоду, а при рН выше pI анион аминокислоты (карбоксилат анион) перемещается к аноду. На этом основано разделение аминокислот методом электрофореза.

Ароматические аминокислоты не образуют цвиттер-ионов, так как основность их аминогруппы понижена из-за сопряжения с бензольным кольцом.

Химические свойства

Химические свойства аминокислот складываются из свойств, характерных для амино- и карбоксильных групп, однако аминокислоты вступают также в некоторые специфические превращения.

Алифатические аминокислоты

Реакции по аминогруппе

Дезаминирование

Дезаминирование аминокислот протекает при действии на них азотистой кислоты, в результате чего образуются оксикислоты. Механизм этого превращения подобен дезаминированию алифатических аминов азотистой кислотой.

Алкилирование

Алкилирование по аминогруппе осуществляется при обработке аминокислот галогеналканами в присутствии щелочей. Применение избытка алкилирующего агента приводит к образованию четвертичных аммониевых солей - бетаинов.

Ацилирование

Ацилирование аминокислот проводят, действуя на них сильными ацилирующими реагентами - ангидридами или галогенангидридами кислот (например, бензоилирование по Шоттену-Бауману).

Формилирование аминогруппы осуществляют обработкой муравьиной кислотой в среде уксусного ангидрида. Последний служит не только растворителем, но и водоотнимающим агентом.

Не исключено, что муравьиная кислота и уксусный ангидрид генерируют смешанный муравьиноуксусный ангидрид (формилацетат), обладающий более высокой формилирующей спсособностью, чем муравьиная кислота.

Формильная и некоторые ацильные группы, например, трифторацетильная и фталильная, используются для защиты аминогруппы. Однако более удобными защитными функциями являются трет-бутоксикарбонильная (БОК) или бензилоксикарбонильная (КБО) группы. Последние легко удаляются мягким кислотным гидролизом (при 0 - 20оС) или каталитическим гидрированием, в отличие от ацильных групп, которые снимаются щелочным гидролизом в более жестких условиях.

 
< Пред   СОДЕРЖАНИЕ   Скачать   След >