Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow Аналитическая химия

В чем заключается сущность амперометрического титрования? Какие электроды используют в этом методе

Ответ: Амперометрическое титрование представляет собой электрометрический метод анализа, основанный на измерении величин предельного диффузионного тока, наблюдаемого на отдельном электроде в процессе титрования.

Момент эквивалентности устанавливается на основании резкого изменения величины предельного диффузионного тока.

Величина предельного диффузионного тока прямо пропорциональна концентрации деполяризатора находящегося в растворе и участвующего в электрохимическом процессе. Эта зависимость, может быть выражена уравнением Ильковича:

id = Co, = 605zD1/2m2/31/6; (4.1.)

Где, id - предельный ток (мкА),

- константа уравнения Ильковича,

Со - концентрация деполяризатора в растворе (моль/л),

D - коэффициент диффузии деполяризатора (см2/с),

z - число электронов, принимающих участие в электродной реакции,

m - скорость вытекания ртути из капилляра (мг/с),

- время жизни ртутной капли (сек).

Такая зависимость будет соблюдаться, если электролиз проводится в присутствии избытка постороннего сильного электролита (фона).

Значение потенциала поляризуемого (индикаторного) электрода задается экспериментатором и должно соответствовать предельному диффузионному току восстановления или окисления одного из следующих веществ: определяемого вещества, реагента (титранта), продукта взаимодействия определяемого вещества с титрантом, или же специально введенного до титрования «полярографического индикатора».

В зависимости от того, какое из перечисленных веществ окисляется или восстанавливается на электроде при выбранном значении потенциала, кривые титрования могут быть различного типа.

Электрохимически активно только определяемое вещество, т.е. только оно восстанавливается или окисляется на электроде. Пример: титрования солей Fe2+ окислителями при потенциале вращающегося платинового электрода +0,8В (нас. кал. э.). В этом случае на электроде протекает реакция окисления: Fe2+ - e- Fe3+ и, следовательно, величина предельного тока будет зависеть от концентрации в растворе соли Fe2+.

Электрохимически активен только титрант (реагент), т.е. он окисляется или восстанавливается на электроде: например, титрование солей Zn2+, Cd2+, Mn2+, Pb2+, Cu2+ ферроцианидом при значении потенциала платинового вращающегося электрода, равном +0,8 В (нас.к.э.). В этом случае на электроде протекает реакция окисления ферроцианид-ионов, предельный ток пропорционален концентрации ферроцианида в растворе.

Восстанавливаются или окисляются на электроде два вещества - определяемое соединение и титрант. Например, титрование солей Cu2+, Cd2+, Zn2+ ортооксихинолином при значении потенциала ртутного капающего электрода равном -1,6 В (нас.к.э.). В этом случае на электроде до момента эквивалентности восстанавливаются ионы Cu2+, Cd2+, Zn2+, а ортооксихинолин - после момента эквивалентности. Т.о., в этом случае величина предельного тока будет прямо пропорциональна концентрации определяемых ионов Cu2+, Cd2+, Zn2+ в растворе - до точки эквивалентности - и концентрации в растворе ортооксихинолина - после точки эквивалентности.

Электрохимически активны как определяемое вещество, так и титрант, причем одно восстанавливается на электроде, другое - окисляется. Например, титрование соли Fe3+ раствором TiCl3 при значении потенциала ртутного электрода, равном -0,25 В (нас.к.э.). Точка эквивалентности обнаруживается вследствие различия угла наклона прямых id - v мл. реагента, описывающих изменение тока до и после момента эквивалентности; это связано, с различным числом электронов, принимающих участие в электродных реакциях определяемого вещества и титранта, а также с различием в коэффициентах диффузии этих веществ. В приведенном примере до момента эквивалентности на электроде восстанавливаются ионы Fe3+, величина предельного тока пропорциональна концентрации соли Fe3+ в растворе. После момента эквивалентности на электроде протекает процесс окисления соли титана (III), величина предельного тока пропорциональна концентрации последней в растворе.

Электрохимически активен только продукт химической реакции, т.е. на электроде протекает восстановление или окисление образующегося в результате химической реакции соединения. Пример: титрование соединений пятивалентного мышьяка иодидами в кислой среде: в результате химической реакции образуется иод, который восстанавливается на вращающемся платиновом электроде. Предельный ток в этом случае прямо пропорционален концентрации иода, образующегося в растворе.

Реагирующие вещества и продукты реакции электрохимически неактивны. Тогда специально в раствор вводится электрохимически активное вещество - «полярографический индикатор». Пример: титрование с «полярографическим индикатором» - солью Fe3+, вводимым перед титрованием соединений алюминия, магния или циркония, раствором фторида; электрод - вращающийся платиновый, значение потенциала равно 0,0 В (нас.к.э.) и отвечает предельному току восстановления активированных ионов Fe3+. В этом случае до точки эквивалентности происходит взаимодействие ионов фтора с определяемым веществом с образованием прочных соединений; только после точки эквивалентности ионы фтора смогут взаимодействовать с Fe3+ (полярографическим индикатором), поскольку образующийся фторидный комплекс менее устойчив. В результате падения концентрации ионов Fe3+ после точки эквивалентности величина предельного тока начинает убывать.

Последний вид титрования основан на использовании различной прочности соединений: определяемое вещество - титрант, «полярографический индикатор» - титрант, образующихся в процессе титрования.

Можно использовать Fe(II) в качестве «полярографического индикатора» при амперометрических титрованиях с ЭДТА. При потенциале +0,4 В на платиновом электроде окисляется не Fe(II), а хелат железа (II) с ЭДТА, и, т.о., после достижения точки эквивалентности предельный ток растет. Резкий подъем тока наблюдается при рН 4 для большинства ионов металлов, образующих с ЭДТА хелаты, константы устойчивости которых больше, чем 1018.

В отдельных, редких случаях можно проводить титрование, когда на поляризуемом (индикаторном) электроде сначала происходит восстановление (или окисление) определяемого вещества, а после момента эквивалентности - титранта. При этом излом на кривой титрования в точке эквивалентности вызван различием в величинах коэффициентов диффузии этих веществ, а также в числе электронов. Примером такого вида титрования может служить определение ванадия (IV) раствором Се(IV). До точки эквивалентности V(IV), взаимодействуя с раствором Ce (IV), переходит в V(V), который, являясь электрохимически активным, восстанавливается на электроде. После момента эквивалентности на электроде протекает восстановление ионов Се(IV).

С помощью амперометрического титрования можно:

определить концентрацию изучаемого соединения в растворе;

устанавливать стехиометрические соотношения, при которых образуются соединения в результате химического взаимодействия между определяемым веществом и титрантом;

определять величину произведения растворимости осадка, образующегося в процессе титрования.

В амперометрических титрованиях могут быть использованы реакции комплексообразования, окисления-восстановления и осаждения.

В качестве поляризующегося индикаторного электрода в амперометрии можно использовать различные металлы, чаще всего применяют ртутный капающий, платиновый и графитовый электроды.

Выбор материала электрода определяется в первую очередь тем, какую электродную реакцию предполагается использовать для титрования. Ртутный капающий электрод применяется в тех случаях, когда нужно восстанавливать ион какого-либо электроотрицательного металла или восстановить органические соединения. На ртути перенапряжение выделения водорода велико: последний будет выделяться при потенциале (Е) около -1,1 В в кислых растворах, -1,5 В в нейтральных и -1,9 В в щелочных.

На платиновом электроде перенапряжение выделения водорода мало и выделение водорода протекает при Е = 0,0 В в кислых растворах, -0,4 В в нейтральных и -0,8 В в сильнощелочных.

Отсюда следует, что на ртутном электроде процессу восстановления многих электроотрицательных ионов не мешает водород. На платиновом электроде восстановления этих веществ не происходит, т.к. не может быть достигнут достаточно отрицательный потенциал.

С другой стороны на платиновом электроде могут протекать такие реакции, какие не могут быть проведены на ртути. Платина обладает высоким положительным потенциалам, она индифферентна к большинству окислителей: при использовании платины в качестве анода она практически в большинстве случаев анодно не растворяется.

Графитовый электрод находит применение для изучения процессов как окисления, так и восстановления. Чаще всего для работы применяется графит, предварительно пропитанный воском, парафином или клеем БФ-2. На пропитанном электроде наблюдается меньший остаточный ток. Это можно объяснить способностью пропитывающих веществ снижать емкостной ток.

Титрование следует проводить при таком потенциале индикаторного электрода, который соответствовал бы области предельного тока иона или молекулы, участвующих в электродной реакции. Для определения потенциала индикаторного электрода необходимо снять полярограмму (вольтамперную кривую) соответствующего иона (молекулы) на этом электроде в той среде, в которой будет проводиться титрование. При снятии полярограмм необходимо учитывать возможность восстановления кислорода (как на ртутном, так и на платиновом электроде). Для удаления кислорода из раствора предварительно через раствор в течение 20-30 минут пропускается струя инертного газа (водород, азот, аргон, гелий).

В амперометрическом титровании поляризация индикаторного электрода осуществляется относительно неполяризуемого электрода, в качестве которого используют электроды сравнения: каломельные, меркуриодидный, хлор - серебряный и др., а также платиновый электрод в случае трехэлектродной ячейки.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее