Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow Основы термодинамики. Принцип возрастания энтропии

Введение

Мы постоянно сталкиваемся не только с механическим движением, но и с тепловыми явлениями, которые связаны с изменением температуры тела или переходом веществ в различное агрегатное состояние - жидкое, газообразное или твердое. Тепловые процессы имеют огромное значение для существования жизни на Земле, поскольку белок способен к жизнедеятельности только в определенном интервале температур. Жизнь на Земле зависит от температуры окружающей среды. Люди добились относительной независимости от окружающей среды после того, как научились добывать огонь. Это было одним из величайших открытий на заре человечества.

Термодинамика представляет собой науку о тепловых явлениях, в которых не учитывается молекулярное строение тел. Законы термодинамики и их применение будут рассмотрены в этом реферате.

История развития термодинамики

В 1824г. французский инженер Сади Карно экспериментально доказывает, что теплота и механическая работа обратимы одна в другую. В 1842г. немецкий врач Роберт Майер отверг теплород как вещественную субстанцию, определил теплоту как силу движения и сформулировал закон сохранения и прекращения сил. Английский физик Джеймс Джоуль определил механический эквивалент теплоты как работу, которую необходимо совершить, чтобы нагреть один грамм чистой Н2О от 19,50 до 20,50С. Эта единица измерения названа его именем и равна 4,18 джоулей. Джоуль экспериментально обосновал и закон сохранения энергии. Однако первую ясную формулировку закона сохранения сил дали немецкий физик Рудольф Кладдиус и английский физик Уильям Томсон. Значительный вклад в развитие теории тепловых явлений и свойств макросистем внесли английский физик Джеймс Максвелл и австрийский физик Людвиг Больцман. В результате этих работ было установлено, что теплота представляет собой форму энергии, и принцип теплорода был заменен гораздо более глубоким законом сохранения энергии.

История открытия закона сохранения и превращения энергии способствует развитию двух качественно различных, но взаимно дополняющих друг друга методов исследования тепловых явлений и свойств макросистем: термодинамического, который лег в основу термодинамики, и статистического, или молекулярно-кинетического, который явился развитием кинетической теории вещества и заложил основу молекулярной физики.

Термодинамика представляет собой науку о тепловых явлениях, в которых не учитывается молекулярное строение тел. Основы термодинамического метода определяли состояние термодинамики, систем, представляли собой совокупность макроскопических тел, которые взаимодействуют и обмениваются энергией, как между собой, так и с другими телами (внешней средой).

Состояние системы задается термодинамическими параметрами, характеризующими ее свойства. Обычно это температура, давление и удельный объем. В термодинамике тепловые явления описываются с помощью величин, регистрируемых приборами, не реагирующими на воздействие отдельных молекул. Все законы термодинамики относятся к телам, число молекул которых огромно. Эти тела образуют макросистемы. Любое изменение в термодинамической системе, связанное с изменением хотя бы одного его термодинамического параметра, называют термодинамическим процессом. Макроскопическая система находится в термодинамическом равновесии, если ее состояние с течением времени не меняется при сохранении внешних условий.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее