Виды термодинамических процессов

Переход физической системы из одного состояния в другое через какую-то последовательность промежуточных состояний называется процессом. Однако при классификации процессов, происходящих в объеме данной термодинамической системы, необходимо учитывать также и те изменения, которые происходят в окружающих телах. Процесс называется обратимым, если выполняются два условия:

1. Если изменения в системе можно провести в обратном направлении через те промежуточные состояния, через которые проходила система в прямом направлении;

2. Если при обратном переходе не только сама система, но и все связанные с ней окружающие тела в точности возвращаются в первоначальное состояние.

Процесс называется равновесным, если начальное, конечное и все промежуточные состояния системы являются равновесными. Таким образом, для равновесности процесса, происходящего внутри термодинамической системы, существование или отсутствие остаточных изменений в окружающих телах не имеет значения, важно только, чтобы каждое из промежуточных состояний системы было равновесным.

Для примера можно рассмотреть процесс расширения и сжатия газа, заключенного в цилиндре с поршнем.

Если поршень смещается вправо или влево очень медленно, то давление и t0 газа в различных местах V газа успевают выравниваться, и следовательно, каждое промежуточное состояние можно считать с удовлетворительной точностью равновесным. Такие процессы можно провести как в одном, так и в обратном направлениях через одни и те же промежуточные состояния с одинаковыми давлениями и температурами по всему V тела.

При быстром сжатии и расширении промежуточные состояния не будут равновесными. При быстром сжатии и расширении промежуточные состояния не будут равновесными. При быстром сжатии давление и t0 вблизи поршня больше, чем вдали от поршня, так как для выравнивания P и t0 всегда требуется некоторое время. При быстром расширении, наоборот, P и t0 вблизи поршня меньше, чем вдали. Таким образом, промежуточные состояния в обоих процессах оказываются неравновесными вследствие того, что процессы выравнивания t0 и давления не происходят мгновенно. Скорость изменения состояния термодинамической системы определяется не только скоростью внешнего воздействия, но и скоростью. Вопрос о том, является ли изучаемый процесс медленным и быстрым, зависит от соотношения между скоростями внешнего воздействия и релаксации. Промежуточные состояния могут быть равновесными только в двух предельных случаях: а) если скорость внешних воздействий бесконечно мала и б) если скорость процессов релаксации бесконечно велика.

Примером необратимых процессов являются процессы расширения или сжатия, происходящие при наличии трения. Если рассматривать вновь расширение и сжатие газов в цилиндре с поршнем, то если бы эти процессы происходили равновесно и без трения, работа, совершаемая газом при расширении, в точности равнялась бы внешней работе, необходимой для сжатия. При наличии же трения работа, совершаемая газом при расширении, будет меньше, а работа внешних сил, затрачиваемая на сжатие газа, будет больше. При трении поршня о стенки цилиндра в процессе расширения выделяется определенное количество теплоты. Для простоты рассуждений допустим, что эта теплота идет только на нагревание цилиндра и поршня. Для того, чтобы процесс сжатия был в точности обратным процессу расширения необходимо, чтобы при сжатии теплота была отнята от цилиндра и поршня, превращена в механическую энергию и передана тому механизму, который производит сжатие газа.

Такой способ возвращения к первоначальному состоянию оказывается невозможным; поршень и цилиндр нагревается также и при сжатии, а в окружающей среде фиксируются остаточные изменения - превращение некоторого количества механической энергии в теплоту.

Таким образом, все процессы, происходящие при наличии трения, являются необратимыми. Превращение механической энергии в тепловую при трении является односторонним процессом; его невозможно провести в обратном направлении, при которых теплота, выделившаяся при трении, могла бы превратиться в механическую работу без каких-либо остаточных изменений в системе и в окружающих телах.

Другим важным примером необратимых процессов является теплообмен между телами, имеющими различные t0. Допустим, что в течение прямого процесса между двумя какими-нибудь телами, входящими в состав системы, существует конечная разность t и теплота переходит от тела с высокой t0 к телу с низкой t0. При обратном процессе теплота полученная холодным телом, должна быть возвращена горячему телу, с тем, чтобы было восстановлено первоначальное состояние системы. Путем одной только теплопроводности такая передача теплоты от холодных тел к горячим невозможно.

 
< Пред   СОДЕРЖАНИЕ   Скачать   След >