Средние величины

Понятие о средних величинах

Статистическая совокупность состоит из множества единиц, объектов или явлений однородных в некотором отношении и одновременно отличных по величине признаков. Величина признаки каждого объекта определяется как общими для всех единиц совокупности, так и индивидуальными ее особенностями.

Анализируя упорядоченные ряды распределения (ранжировані, интервальные и др.), можно заметить, что элементы статистической совокупности явно концентрируются вокруг некоторых центральных значений. Такая концентрация отдельных значений признака вокруг некоторых центральных значений, как правило, имеет место во всех статистических распределениях. Тенденцию отдельных значений исследуемого признака группироваться вокруг центра распределения частот называют центральной тенденцией. Для характеристики центральной тенденции распределения применяются обобщающие показатели, которые получили название средних величин.

Средней величиной в статистике называют обобщающий показатель, характеризующий типичный размер признака в качественно однородной совокупности в конкретных условиях места и времени и отражает величину варьирующей признака в расчете на единицу совокупности. Вычисляется средняя величина в большинстве случаев путем деления общего объема признака на число единиц, обладающих этим признаком. Если, например, известный фонд месячной заработной платы и количество рабочих за месяц, то среднюю месячную заработную плату можно определить путем деления фонда заработной платы на количество рабочих.

В качестве средних величин выступают такие показатели как средняя продолжительность рабочего дня, недели, года, средний тарифный разряд рабочих, средний уровень производительности труда, средний национальный доход на душу населения, средняя урожайность зерновых культур по стране, среднее потребление продуктов питания на душу населения и т.д.

Средние величины исчисляются как из абсолютных, так и относительных величин, являются показателями именованными и измеряются в тех же единицах измерения, что и усереднювана признак. Они характеризуют одним числом значение исследуемой совокупности. В средних величинах находит отражение объективный и типичный уровень социально-экономических явлений и процессов.

Каждая средняя характеризует изучаемую совокупность по одному какому-либо признаку, но для характеристики любой совокупности, описания ее типичных черт и качественных особенностей нужна система средних показателей. Поэтому в практике отечественной статистики для изучения социально-экономических явлений, как правило, используется система средних показателей. Так, например, показатели средней заработной платы оцениваются совместно с показателями производительности труда (средней выработки продукции за единицу рабочего времени), фондовооруженностью и енергоозброєністю, уровнем механизации и автоматизации работ и др.

В статистической науке и практике средние величины имеют исключительно большое значение. Метод средних величин является одним из важнейших статистических методов, а средняя величина - одной из основных категорий статистической науки. Теория средних величин занимает одно из центральных мест в теории статистики. Средние величины являются основой для расчета показателей вариации (раздел 5), ошибок выборки (раздел 6), дисперсионного (раздел 8) и корреляционного анализа (раздел 9).

нельзя представить также статистику без индексов, а последние по существу представляют собой средние величины. Использование метода статистических группировок тоже ведет к пользованию средними величинами.

Как уже отмечалось, метод группировок - один из основных методов статистики. Метод средних в сочетании с методом группировок это составная часть научно разработанной статистической методологии. Средние показатели органично дополняют метод статистических группировок.

Средние величины используются для характеристики изменения явлений во времени, расчета средних темпов роста и прироста. Например, сопоставление средних темпов роста показателей производительности труда и ее оплаты за определенный период (ряд лет) раскрывает характер развития явления за изучаемый промежуток времени, отдельно производительности труда и отдельно оплаты труда. Сопоставление темпов роста указанных двух явлений дает представление о характере и особенность соотношения роста или снижения производительности труда относительно ее оплаты за определенные промежутки времени.

Во всех случаях, когда возникает необходимость охарактеризовать одним числом совокупность значений признака, что меняются, пользуются его средним значением.

В статистической совокупности значение признака изменяется от объекта к объекту, то есть варьирует. Усредняя эти значения и предоставляя урівняне значение признака каждому члену совокупности мы абстрагируемся от индивидуальных значений признака, тем самым как бы заменяем ряд распределения значений признака одним и тем же значением, равным средней величине. Однако такая абстракция правомерна лишь в том случае, если усреднение не меняет основного свойства по отношению к данной признаки в целом. Это основное свойство статистической совокупности, связанная с отдельными значениями признака, и которая при усреднении должна быть сохранена неизменной, называется определяющим свойством средней по отношению к исследуемой признаки. Иначе говоря, средняя заменяя индивидуальные значения признака, не должна изменять общего объема явления, т.е. обязательная такое равенство: объем явления равна произведению средней величины на численность совокупности. Например, если из трех значений урожайности ячменя (х, =20,0; 23,3; 23,6 ц/га) вычислена средняя(20,0+23,3+23,6):3 = 22,3 ц/га, то по определяющим свойством средней должна быть соблюдена такая равенство:

Как видно из приведенного примера, средняя урожайность ячменя не совпадает ни с одной из индивидуальных, так как ни в одном хозяйстве не полученная урожайность-22,3 ц/га. Однако если представить, что в каждом хозяйстве получили по 22,3 ц/га, то общая сумма урожайности не изменится и будет равна 66,9 ц/га. Следовательно, средняя заменяя фактическое значение отдельных индивидуальных показателей, не может изменить размер всей суммы величин исследуемого признака.

Главное значение средних величин состоит в их обобщающей функции, т.е. в замене множества различных индивидуальных значений признака средней величиной, характеризующей всю совокупность явлений. Свойство средней характеризовать не отдельные единицы, а выразить уровень признака в расчете на каждую единицу совокупности является ее отличительной способностью. Эта особенность делает среднюю обобщающим показателем уровня варьирующей признаки, т.е. показателем, который абстрагируется от индивидуальных значений величины признака у отдельных единиц совокупности. Но то, что средняя является абстрактной, не лишает ее научного исследования. Абстракция является необходимая степень всякого научного исследования. В средней величине, как в любой абстракции, осуществляется диалектическое единство индивидуального и общего. Взаимосвязь средних и отдельных значений усредненной признаки служит выражением диалектической связи индивидуального и общего.

Применение средних должно базироваться на понимании и взаимосвязи диалектических категорий общего и индивидуального, массового и единичного.

Средняя величина отражает то общее, что складывается в каждом отдельном, единичном объекте. Благодаря этому средняя получает большое значение для выявления закономерностей, присущих массовым общественным явлениям и не заметных в единичных явлениях.

В развитии явлений необходимость сочетается со случайностью. Поэтому средние величины связаны с законом больших чисел. Суть этой связи заключается в том, что при расчете средней величины случайные колебания, имеющие разную направленность, в силу действия закона больших чисел, взаимно уравновешиваются, погашаются и в величине средней четко отображается основная закономерность, необходимость, влияние общих условий, характерных для данной совокупности. В средней находит отражение типичный, реальный уровень изучаемых явлений. Оценка этих уровней и изменение их во времени и пространстве - одна из главных задач средних величин. Так, через средние проявляется, например, закономерность повышения производительности труда, урожайности сельскохозяйственных культур, продуктивности животных. Следовательно, средние величины представляют собой обобщающие показатели, в которых находит свое выражение действие общих условий, закономерность изучаемого явления.

С помощью средних величин изучают изменение явлений во времени и пространстве, тенденции в их развитии, связи и зависимости между признаками, эффективность различных форм организации производства, труда и технологий, внедрения научно-технического прогресса, выявление нового, прогрессивного в развитии тех или иных социально-экономических явлений и процессов.

Средние величины широко применяются в статистическом анализе социально-экономических явлений, так как именно в них находят свое проявление закономерности и тенденции развития массовых общественных явлений, варьирующих как во времени, так и в пространстве. Так, например, закономерность повышения производительности труда в экономике находит свое отражение в росте среднего производства продукции из расчета на одного работника, занятого в производстве, увеличения валовых сборов - в росте средней урожайности сельскохозяйственных культур и т.д.

Средняя величина дает обобщенную характеристику изучаемого явления только по одному признаку, которая отражает одну из важнейших его сторон. В связи с этим для всестороннего анализа исследуемого явления необходимо строить систему средних величин по ряду взаимосвязанных и дополняющих друг друга существенных признаков.

Для того, чтобы средняя отражала действительно типичное и закономерное в изучаемых общественных явлениях при ее расчете необходимо придерживаться таких условий.

1. Признак, по которому исчисляется средняя должна быть существенной. В противном случае будет получена несущественна или искаженная средняя.

2. Среднюю нужно вычислять только по качественно однородной совокупности. Поэтому непосредственному вычислению средних должно предшествовать статистическое группирование, которое дает возможность расчленить исследуемую совокупность на качественно однородные группы. В связи с этим научной основой метода средних величин метод статистических группировок.

Вопрос об однородности совокупности не должен решаться формально по форме ее распределения. Его, так же как и вопрос о типичности средней, нужно решать, исходя из причин и условий, формирующих совокупность. Однородной является и совокупность, единицы которой формируются под влиянием общих главных причин и условий, которые определяют общий уровень данного признака, характерное для всей совокупности.

3. Расчет средней величины должна базироваться на охвате всех единиц данного типа или достаточно большой совокупности объектов, чтобы случайные колебания взаимно зрівноважували друг друга и проявлялась закономерность, типичные и характерные размеры изучаемого признака.

4. Общим требованием при расчете любого вида средних величин является обязательным сохранении неизменным общего объема признака в совокупности при замене индивидуальных его значений средним значением (так называемая определяющее свойство средней).

 
< Пред   СОДЕРЖАНИЕ   След >