Ошибки выборки
Между показателями выборочной совокупности и искомыми показателями (параметрами) генеральной совокупности, как правило, существуют некоторые разногласия, которые называют ошибками выборки. Общая ошибка выборочной характеристики состоит из ошибок двух родов: ошибки регистрации и ошибки репрезентативности.
Ошибки регистрации свойственны любому статистическому наблюдению и появление их может быть вызвано невнимательностью регистратора, неточностью подсчетов, несовершенством измерительных приборов и т.д.
Ошибки репрезентативности присущи только выборочному наблюдению и обусловлены самой его природой поскольку как бы тщательно и правильно не проводился отбор единиц средние и относительные показатели выборочной совокупности всегда будут в какой-то степени отличаться от соответствующих показателей генеральной совокупности.
Различают систематические и случайные ошибки репрезентативности. Систематические ошибки репрезентативности - это неточности, которые возникают вследствие несоблюдения условий отбора единиц в выборочную совокупность, не предоставление равной возможности каждой единице генеральной совокупности попасть в выборку. Случайные ошибки репрезентативности - это погрешности, которые возникают вследствие того, что выборочная совокупность точно не воспроизводит характеристики генеральной совокупности (среднее, долю, дисперсию и др.) в силу несплошного характера обследования.
При соблюдении принципа случайного отбора размер ошибки выборки прежде всего зависит от численности выборки. Чем больше численность выборки при прочих равных условиях, тем меньше величина ошибки выборки. При большой численности выборки отчетливее проявляется действие закона больших чисел, согласно которому: с вероятностью, сколь угодно близкой к единице, можно утверждать, что при достаточно большом объеме выборки и ограниченной дисперсии выборочные характеристики (средняя доля) будут сколь угодно мало отличаться от соответствующих генеральных характеристик.
Размеры ошибки выборки также непосредственно связаны со степенью варьирования изучаемого признака, а степень варьирования, как отмечалось выше, в статистике характеризуется размером дисперсии (рассеяния): чем меньше дисперсия, тем меньше ошибка выборки, тем более надежные статистические выводы. Поэтому на практике дисперсию отождествляют с ошибкой выборки.
Поскольку параметр генеральной совокупности есть искомая величина и он неизвестен, нужно ориентироваться не на конкретную ошибку, а среднюю из всех возможных выборок.
Если из генеральной совокупности отобрать несколько выборочных совокупностей, то каждая из полученных выборок даст разное значение конкретной ошибки.
Средняя квадратическая величина /и исчисленная из всех возможных значений конкретных ошибок (;) составит:
где *и - выборочные средние; х - генеральная средняя; )] - численность выборок по величине є1 = ~си - х.
Среднее квадратическое отклонение выборочных средних от генеральной средней называют средней ошибкой выборки.
Зависимость величины ошибки выборки от ее численности и от степени варьирования признака находит выражение в формуле средней ошибки выборки /и.
Квадрат средней ошибки (дисперсия выборочных средних) прямо пропорционален дисперсии Сто и обратно пропорционален численности выборки п:
где - дисперсия признака в генеральной совокупности.
Отсюда среднюю ошибку в общем виде определяют по формуле:
Итак, определив по выборке среднее квадратичное отклонение, можно установить значение средней ошибки выборки, величина которой, как следует из формулы, тем больше, чем больше вариация случайной величины и тем меньше, чем больше численность выборки.
Поэтому по мере роста объема выборки размер средней ошибки уменьшается. Если, например, нужно уменьшить среднюю ошибку выборки в два раза, то численность выборки следует увеличить в четыре раза, если надо уменьшить ошибку выборки в три раза, то объем выборки следует увеличить в девять раз и т. д.
В практических расчетах применяются две формулы средней ошибки выборки для средней и для доли.
При выборочном изучении средних показателей формула средней ошибки такая:
При изучении относительных показателей (частных признаков) формула средней ошибки имеет вид:
гдег - доля признака в генеральной совокупности.
Применение приведенных формул средней ошибки предполагает, что известны генеральная дисперсия и генеральная доля. Однако в действительности эти показатели неизвестны и вычислить их невозможно из-за отсутствия данных относительно генеральной совокупности. Поэтому возникает потребность замены генеральной дисперсии и генеральной доли другими, близкими к ним, величинами.
В математической статистике доказано, что такими величинами могут быть выборочная дисперсия(ст ) и выборочная доля (со).
С учетом сказанного формулы средней ошибки могут быть записаны так:
Эти формулы дают возможность определить среднюю ошибку при повторной выборке. Применения простой случайной повторной выборки в практике является ограниченным. Прежде всего практически нецелесообразно, а иногда невозможно повторное обследование тех же единиц. Применение бесповторного отбора вместо повторного диктуется также требованием повышения степени точности и надежности выборки. Поэтому на практике чаще используют способ бесповторного случайного отбора. По этому способу отбора единица совокупности, отобранная в выборку, в дальнейшем отборе не участвует. Единицы отбирают из генеральной совокупности, уменьшенной на количество ранее отобранных единиц. Поэтому в связи с изменением численности генеральной совокупности после каждого отбора и вероятности отбора для единиц, что остались, в формулы средней ошибки выборки вводится поправочный множитель
где N - численность генеральной совокупности; п - численность выборки. При достаточно большом значении N можно единицей в знаменателе пренебречь. Тогда
Следовательно, формулы средней ошибки выборки для бесповторного отбора для средней и для доли соответственно имеют вид:
1 - п
Поскольку п всегда меньше М, то дополнительный множитель всегда меньше единицы. Следовательно, абсолютное значение ошибки выборки при бесповторном отборе всегда будет меньше, чем при повторном.
1 п
Если численность выборки достаточно велика, то величина 1 ^ близка к единице, а потому ею можно пренебречь. Тогда среднюю ошибку случайного бесповторного отбора определяют по формуле собственно-случайной повторной выборки.
Рассчитаем для нашего примера среднюю ошибку для урожайности и доли участков с урожайностью 25 ц/га и более.
Средняя ошибка выборки
а) средней урожайности ячменя
Средняя урожайность ячменя в генеральной совокупности х -Г^ = 25,1 ± 0,12 ц/га, то есть находится в пределах от 24,98 до 25,22 ц/га.
Доля участков с урожайностью 25 ц/га и более в генеральной совокупности р
= т-^Г = 0,80 ± 0,07, т.е. находится в пределах от 73 до 87%.
Средняя ошибка выборки показывает возможные отклонения характеристик выборочной совокупности от характеристик генеральной совокупности. Вместе с тем при проведении выборочного наблюдения перед исследователями часто стоит задача расчета не только средней ошибки, но и определение предельной возможной ошибки выборки. Зная среднюю ошибку, можно определить границы, за которые не выйдет величина ошибки выборки. Однако утверждать, что эти отклонения не превысят заданной величины, можно не с абсолютной достоверностью, а лишь с определенной степенью вероятности. Уровень вероятности, что принимается при определении возможных пределов, в которых содержатся значения параметров генеральной совокупности, называется доверительным уровнем вероятности.
Доверительная вероятность - это довольно высокая и, такая, что практически считается осуществленной в каждом конкретном случае, вероятность, что гарантирует получение надежных статистических выводов. Обозначим ее через Г а вероятность превысить этот уровень - а. Итак, а =1 - Р Вероятность а называют уровнем значимости (существенности), который характеризует относительное число ошибочных выводов в общем числе выводов и определяется как разница между единицей и доверительной вероятностью, что принимается.
Уровень доверительной вероятности устанавливает исследователь исходя из степени ответственности и характера задач, которые решаются. В статистических исследованиях в экономике чаще всего принимается уровень доверительной вероятности Г = 0,95; Р = 0,99 (соответственно уровень значимости а = 0,05; а = 0,01) реже Г = 0,999. Например, доверительная вероятность Г = 0,99 означает, что ошибка оценки в 99 случаях из 100 не превысит установленной величины и только в одном случае из 100 может достичь вычисленного значения, или превысить его.
Ошибка выборки, исчисленная с заданной степенью надежной вероятности, называется предельной ошибкой выборки Ер.
Рассмотрим, как устанавливается величина возможной предельной ошибки выборки. Величина ер связана с нормированным отклонением и, которое определяется как отношение предельной ошибки выборки ер к средней ошибки и:
Для удобства расчетов отклонения случайной величины от ее среднего значения обычно выражают в единицах среднего квадратического отклонения. Выражение
называют нормированным отклонением. в В статистической литературе и называют коэффициентом доверия, или коэффициентом кратности средней ошибки выборки.
Так, нормированное отклонение выборочной средней можно определить по формуле:
и _є_р_
Из выражения 1 можно найти возможную предельную ошибку выборки
ер = и/л.
Подставив вместо г. в ее значение, приведем формулы предельных ошибок выборки для средней и для доли при бесповторном случайном отборе:
Следовательно, предельная ошибка выборки зависит от величины средней ошибки и нормированного отклонения и равна ± кратному числу средних ошибок выборки.
Средняя и предельная ошибки выборки - именованные величины и выражаются в тех же единицах, что и средняя арифметическая и среднее квадратическое отклонения.
Нормированное отклонение функционально связано с вероятностью. Для нахождения значений и составлены специальные таблицы (доб.2), по которым можно найти значение и при заданном уровне доверительной вероятности и значения вероятности при известном и.
Приведем значения и и соответствующие им вероятности для выборок с численностью п > 30, что чаще всего используется в практических расчетах:
Следовательно, при и = 1 вероятность отклонения выборочных характеристик от генеральных на величину однократной средней ошибки выборки равна 0,6827. Это означает, что в среднем с каждой 1000 выборок 683 дадут обобщенные характеристики, которые будут отличаться от генеральных обобщенных характеристик не более, чем на величину однократной средней ошибки. При и = 2 вероятность равна 0,9545. в Это означает, что с каждого 1000 выборок 954 дадут обобщенные характеристики, которые будут отличаться от генеральных обобщенных характеристик не более чем на двукратную среднюю ошибку выборки и т.д.
Однако в связи с тем, что, как правило, проводится только одна выборка, то мы говорим, что, например, с вероятностью 0,9545 можно гарантировать, что размеры предельной ошибки не превысят двукратную среднюю ошибку выборки.
Математически доказано, что отношение ошибки выборки к средней ошибки, как правило, не превышает ± 3д при достаточно большой численности п, несмотря на то, что ошибка выборки может приобретать любые значения. Другими словами можно сказать, что при достаточно высокой вероятности суждения (Р = 0,9973) предельная ошибка выборки, как правило, не превышает трех средних ошибок выборки. Поэтому величину Ер = 3д можно принять за предел возможной ошибки выборки.
Определим для нашего примера предельную ошибку выборки для средней урожайности и доли участков с урожайностью 25 ц/га и более. Доверительный уровень вероятности примем равным Р = 0,9545. в По таблице (прил.2) найдем значения и = 2. Средние ошибки выборки для урожайности и доли участков с урожайностью 25 ц/га и больше были найдены ранее и соответственно составляли: Ц~ = ±0,12 ц/га; МР = ± 0,07.
Предельная ошибка средней урожайности ячменя:
Итак, разница между выборочной средней урожайностью и генеральной средней будет не больше 0,24 ц/га. Пределы средней урожайности в генеральной совокупности: х = х ±есть~ = 25,1 + 0,24, то есть от 24,86 до 25,34 ц/га.
Предельная ошибка доли участков с урожайностью 25 ц/га и более:
Следовательно, предельная ошибка в определении доли участков с урожайностью 25 ц/га и больше не превысит 14%, то есть удельный вес участков с указанной урожайностью в генеральной совокупности находится в пределах: г = а> ± ер = 0,80 ± 0,14, то есть от 66 до 94%.