Показатели тесноты связи

При корреляционному связи вместе с исследуемым фактором или несколькими факторами при множественной корреляции на результативный признак оказывают влияние и другие факторы, которые не учитываются или не могут быть точно учтены. При этом действие их может быть направлена как в сторону повышения результативного признака, так и в сторону ее снижения. Итак, исследование связи происходит в условиях, когда эта связь в большей или меньшей степени затушевывается противоречивой действием других причин. Поэтому одна из задач корреляционного анализа состоит в определении тесноты связи между признаками, в определении силы воздействия исследуемого фактора (факторов) на результативный признак.

Теснота связи в корреляционному анализе характеризуется с помощью специального относительного показателя, который получил название коэффициента корреляции.

При парной линейной зависимости теснота связи определяется с помощью линейного коэффициента корреляции

Коэффициент корреляции находится в пределах от 0 к ±1. в Если коэффициент корреляции равен нулю, то связь отсутствует, а если единице, то связь функциональная. Знак при коэффициенте корреляции указывает на направление связи ("+" - прямой "-" - обратная). Чем ближе коэффициент корреляции к единице, тем связь между признаками теснее.

Квадрат коэффициента корреляции называется коэффициентом детерминации (г2). Он показывает, какая доля общей вариации результативного признака определяется исследуемым фактором. Если коэффициент детерминации выраженный в процентах, то его следует читать так: вариация (колебания) зависимой переменной на столько-то процентов обусловлена вариацией фактора.

Между линейным коэффициентом корреляции (г) и коэффициентом полной регрессии (Ь) связь:

Следовательно, зная коэффициент корреляции (г) и значения средних квадратических отклонений по х и в можно определить коэффициент регрессии (Ь) и наоборот, зная коэффициент регрессии (Ь) и соответствующие средние квадратические отклонения можно вычислить коэффициент корреляции (г).

При парной линейной зависимости коэффициент корреляции и коэффициент полной регрессии имеют одинаковые знаки (плюс, минус).

Линейный коэффициент корреляции предназначен для оценки степени тесноты связи при линейной зависимости. Для случаев нелинейной связи между признаками используется другая формула коэффициента корреляции, которая следует из правила сложения дисперсий:

Из приведенного равенства видно, что чем больше влияние фактора на результативный признак, тем в большей степени ее значение дисперсии ("м.гр ) приближается к значению общей дисперсии результативного признака.

Соответственно, чем больше "м.гР и меньше ае.гр тем связь между признаками будет теснее и наоборот. Следовательно, отношение межгрупповой (факторной) и общей дисперсий используется для оценки тесноты связи между признаками. Формула коэффициента корреляции имеет вид:

Учитывая, щосг2я = о-а-огля!>, формулу коэффициента корреляции можно представить как

Обе формулы коэффициента корреляции применяются для расчета тесноты связи при любой форме связи.

Из правила сложения дисперсий видно, что значение коэффициента корреляции находится в пределах от 0 до 1. Знак коэффициента корреляции с формулы не выводится. Если изучается связь между двумя признаками (парная простая корреляция), то направление связи (знак перед г) определяется непосредственно за знаком перед коэффициентом регрессии линейного уравнения.

При парной криволинейной зависимости, теснота связи при линейной зависимости, определяется с помощью специального показателя, аналогичного рассмотренному выше коэффициента корреляции г.

Этот показатель (чтобы подчеркнуть его принадлежность к криволинейного связи) обозначают символом иг и называют индексом корреляции:

Числовое значение индекса корреляции аналогичное коэффициенту корреляции: если иг = 1 - связь функциональная, если иг = 0 - связь отсутствует; чем иг ближе к единице, тем связь между признаками теснее.

Если известны коэффициенты регрессии уравнения связи, то индекс корреляции можно определить по другой, более простой формуле. Так, при параболической зависимости формула индекса корреляции может быть представлена как

Теснота связи при множественной корреляции определяется с помощью коэффициента множественной корреляции (ее) и коэффициента множественной детерминации (її2). По содержанию они аналогичны коэффициентам корреляции и детерминации при парном связи. их вычисления основывается на сравнении межгрупповой (факторной) и общей дисперсий:

Эта формула может быть применена для определения тесноты связи при любой форме связи.

Величина рч. изменяется от 0 до 1 и рассматривается как положительная, поскольку при множественных зависимостях связь результативного признака с одними факторами может быть положительным, а с другими - отрицательным.

Для случая зависимости результативного признака от двух факторов формула коэффициента множественной корреляции имеет вид

где Ги - парные линейные коэффициенты корреляции.

Приведенная формула применяется для определения тесноты связи при линейной зависимости.

Для определения тесноты связи между результативным признаком и каждым фактором при исключены влияния других факторов определяют частные коэффициенты корреляции, которые характеризуют "чистая" влияние фактора на результативный признак. Для их расчета используются парные коэффициенты корреляции.

В случае зависимости результативного признака от двух факторов (х1 и х2) можно рассчитать три коэффициента частичной корреляции:

1) между в и х1 при исключении влияния х2:

Коэффициенты корреляции при парных и множественных связей, а также индекс корреляции - это относительные величины, поэтому они могут быть использованы для сопоставления тесноты связи по нескольким явлениях, которые анализируются.

Следует иметь в виду, что показатели тесноты связи зависят от размаха варьирования изучаемых признаков. Чем больше вариация переменных, тем выше будет величина показателей тесноты связи.

Определим тесноту связи между исследуемыми признаками для нашего примера. Поскольку между продуктивностью коров и уровнем кормления имеет место линейная связь, тесноту связи определим с помощью линейного коэффициента корреляции

Коэффициент корреляции показывает, что между продуктивностью коров и уровнем кормления имеет место тесная (сильная) связь.

Коэффициент детерминации г2 = 0,93442 = 0,8731 показывает, что 87,31% общего колебания продуктивности коров обусловлено различиями в уровне кормления, а остальные 12,69% (100 - 87,31) - другими факторами, которые в данном случае не было учтено.

Коэффициент корреляции можно найти и по другим формулам:

 
< Пред   СОДЕРЖАНИЕ   След >