Физиологическая характеристика неорганических ионов

Клеточные мембраны имеют свойства полупроницаемости, то есть некоторые вещества через них проходят, а другие - нет. Вследствие этого те или другие соединения могут накапливаться с какой-то стороны от мембраны, создавая концентрационные градиенты. Так, в клетке и вне ее существенно

различается содержание большинства ионов (табл. 1), участвующих в выполнении многих физиологических процессов.

Таблица 1. Концентрация некоторых ионов внутри мышечного волокна и вне его (ммоль1л)

Концентрация некоторых ионов внутри мышечного волокна и вне его (ммоль/л)

Кратко перечислим функциональное назначение ионов некоторых металлов, которые обладают наибольшей биологической активностью, которая оказывается внутри клетки (органоїда) или вне ее.

Так, натрий обеспечивает осмотическое давление, регулирует водный обмен между клетками и внеклеточным средой. Ионы натрия участвуют в поддержании кислотно-основного состояния (КОС) в организме. Во многих тканях они участвуют в электрохимических процессах, а также в регуляции функций нуклеиновых кислот, белков. С ними связано трансмембранное транспортировки отдельных веществ.

Немало функций калия совмещены с функциями натрия, но противоположные им. Это наблюдают как в электрохимических процессах, так и в воздействии на ферменты (калий активирует некоторые ферменты гликолиза, а натрий - удручает). Вместе с тем К' выполняет и "свои" функции. Например, его считают одним из регуляторов процессов транскрипции.

Функциональное назначение кальция настолько разнообразно и значимо для большинства органов и систем, регуляции его обмена обеспечивают несколько гормонов. Кальций необходим для секреторной активности практически всех железистых клеток. В большинстве клеток его считают одним из регуляторов внутриклеточных процессов. В то же время поступление в цитоплазму клеток большого количества свободного кальция неблагоприятное, поскольку в таком случае образуется малорастворимое соль фосфата кальция, под влиянием которой прекращается продуцирование и утилизация аденозинтрифосфорной кислоты (АТФ). Поэтому в клетках, где кальций используется для обеспечения функций (например, в мышечной - для сокращения), существует система его депо - саркоплазмами" 1-ный ретикулум (СР). Из него кальций выходит в цитоплазму на относительно короткий период. В русле крови этот ион участвует в обеспечении процессов гемостаза (спинення кровотечения). В крови более половины его концентрации находится в ионизированном состоянии, большая часть остального связана с белками, а меньшая - растворенными в крови веществами (цитратом). Многообразие функций кальция определяет необходимость поддержания его концентрации в крови на уровне 0,25 ммоль (0,5 ммоль1л).

Неорганические анионы (С1-, НСО,, Н2Р04 и др.) также выполняют свойственные им функции, о чем речь пойдет в соответствующих разделах. Вследствие значимости для выполнения физиологических процессов указанных неорганических ионов механизмы, которые обеспечивают поступление и выход их через мембранные структуры, будет рассмотрен далее.

Функции белков мембран

Большинство функций мембран (перепонка) обусловлены их белковыми компонентами, которые выполняют роль ионных каналов, насосов, ферментов, рецепторов. Активность функции, которые они проявляют, зависит как от самих белков и их плотности на мембране, так и от ее липидов. Все указанные механизмы изменяются под влиянием сложной системы регуляции.

Транспортные белки

Диффузия.

Переход различных веществ через мембрану зависит от величины их молекулы, заряда, а также растворимости в липидах. Жирорастворимые соединения (СО2,02 и др.) могут относительно легко проникать сквозь мембрану, если возникают условия для их диффузии. Основной механизм, обеспечивающий процесс диффузии - концентрационный градиент вещества: он с большей концентрации перемещается в меньшую.

Но из-за того, что растворимость различных соединений в липидах неодинакова, скорость транспортировки так же разная. Так. растворимость углекислого газа выше, чем кислорода, поэтому он гораздо быстрее проникает через мембраны. А следовательно, он требует меньше концентрационный градиент.

Трансмембранное транспортировки большинства соединений, ионов происходит с помощью соответствующих систем. Если жирорастворимые небольшие полярные молекулы, такие как этанол и мочевина, в отношении легко проходят сквозь липидный слой мембраны, то сахара диффундируют со значительными трудностями.

Заряженные частицы также не могут пройти через липиды мембран. И ведущую роль в обеспечении этих процессов играют белковые структуры. Транспортировка веществ осуществляется с помощью следующих механизмов:

o пассивного;

o первично-активного;

o повторно-активного (совмещенного).

Пассивное транспортировки происходит специальными каналами без затраты энергии путем диффузии по концентрационным градиентом. Для заряженных частиц имеет значение еще и электрохимический градиент. Так, катионы калия, выходящих из клетки, содержащиеся в ней отрицательными анионами.

Активное транспортировки требует специальных белковых структур, что называют насосами, и обязательного использования энергии..

Сочетанное транспортировки обеспечивают белки, транспортирующие одновременно два соединения. Причем этот вид транспортировки может быть однонаправленным, когда оба соединения проникают через мембрану в одном направлении (симпорт), либо разнонаправленным (анти-порт). Соединенное транспортировка также требует энергии ионных насосов, но она не всегда используется в том участке плазматической мембраны, через который оно осуществляется (рис. 4, 5).

Белки-переносчики.

Мембраны содержат широкий набор белков-переносчиков, обеспечивающих пассивное транспортировки веществ. И хотя проникновение веществ осуществляется за градиентом концентрации, оно отличается от обычной диффузии. Во-первых, это высокоспецифичный процесс, во-вторых - скорость его намного больше, чем при простой диффузии.

Соединяясь с веществом, что транспортируется и не может самостоятельно пройти через мембрану, переносчик обеспечивает моментальное 4 протягивания" сквозь липидный слой. Таким образом транспортируются ионы, амино - и органические кислоты, моноцукриди, нуклеотиды. Для кож

Типы подвижности отдельных элементов мембраны:

Рис. 4. Типы подвижности отдельных элементов мембраны:

а - боковая подвижность липидов; б - вращательные движения; в - боковая подвижность белков; г - "флип-флоп" липидов; г- "флип-флоп" белков

Пути трансмембранного транспортировки:

Рис. 5. в Пути трансмембранного транспортировки:

* - глюкоза (по Ю.П. Болдиревим)

ного из них существуют свои переносчики, плотность которых на мембранах разная и регулируемая. Для функционирования этой системы необходимо соблюдение нескольких условий:

а) вещество, которое транспортируется, пересекает мембрану только вместе с переносчиком;

б) молекула переносчика должна соединяться с молекулой вещества.

Ионные каналы.

наиболее Типичным считается трансмембранное транспортировки ионов, проходящих за одним из разновидностей белков-переносчиков, так называемыми каналами (порами). Важнейшие (и изучены на сегодня) три из них:

1) натриевый;

2) калиевый;

3) кальциевый.

Как правило, канал состоит из трех частей (рис. 6). Первая из них-водная пора, выстланная внутри гидрофильными группами. На внешней ее поверхности содержится участок, осуществляющий разделение ионов, - селективный фильтр. Управляет состоянием канала структура, что находится возле обращенного внутрь края поры и имеет название "ворота".

Ионы в растворе находятся в гидратованной форме, тоб

Схематическое изображение хемозбудливого ионного канала, активированного ацетилхолином (АХ). Канал образован макромолекулою белка, погруженной в липидный двойной мембраны.

Рис. 6. Схематическое изображение хемозбудливого ионного канала, активированного ацетилхолином (АХ). Канал образован макромолекулою белка, погруженной в липидный двойной мембраны. Воротами канала управляет хеморецептор. До взаимодействия молекул АХ с рецептором ворота закрыты (а), после связывания с ним они растворяются (б; за Бы.И. Ходоровим)

то связаны с молекулами воды. Это увеличивает эффективные размеры катионов. Открытый канал (раскрытые ворота) позволяет ионам проходить через мембрану, оставаясь в водном окружении. Однако селективная участок настолько узкая, что часть водной оболочки ион теряет. Первый фактор, ограничивающий прохождение катионов каналом, - это размер селективного фильтра: для натриевого канала он составляет 0,3 х 0,5 нм, для калиевого - 0,3 х 0,3 нм. Кальциевый канал большего диаметра (0,65 нм), поэтому сквозь него может проходить не только Са2 а и № Другой фактор, регулирует прохождение ионов, - заряд стенки поры. В рассмотренных катионных каналах стенка пор имеет отрицательный заряд, поэтому через них могут проникать анионы - они отталкиваются.

Регуляцию состояния канала осуществляет воротный механизм. Его положение ("открыто" или "закрыто") в зависимости от места расположения канала на мембранах определяют: электрическим зарядом мембраны и специальными рецепторами, которые взаимодействуют с лигандом (биологически активным соединениям, например медиатором).

Ионные насосы.

Функциональное назначение биологических насосов заключается в поддержании внутри клетки постоянства ионного состава. их еще называют транспортными аденозинтрифосфатазами (АТФазами), ведь они обеспечивают транспорт ионов против концентрационного градиента, для чего нужна энергия АТФ. Наиболее типичные и на сегодня относительно хорошо изучены два насоса.

N0*-, ИС-АТФаза. В плазматической мембране содержится интегральный белок, обеспечивающий соединен антипорт Na+ и К+. Благодаря использованию энергии молекулы АТФ происходит выкачивание трех ионов натрия из клетки и накачки двух ионов калия. К+-насос состоит из двух субъединиц -а-липопротеина и $-гликопротеина (рис. 7).

Ферментативный центр его, что гидролизует АТФ, расположен на а-субъединице, обращенной внутрь клетки. Активация указанного фермента осуществляет натрий на внутренней ее поверхности. Калиесвязывательный центр расположен в той части молекулы, которая ориентирована в внеклеточную среду.

Схематично функцию одного цикла этого насоса можно описать следующим образом. Поступление ионов натрия в открытый сначала "внутренний вход" приводит к переходу фермента в конформационный состояние Е2 и последующего закрытия внутреннего и открытие внешнего канала. Для конформационного состояния Е2 характерно высокое сродство к ионам калия, которые замещают ионы натрия, выталкиваются. Связывание К+ и гидролиз АТФ вызывают возвращение АТ Фазы в восходящий

Механизм действия Na+, К+-насоса (Асп - остаток аспарагиновой кислоты)

Рис. 7. Механизм действия Na+, К+-насоса (Асп - остаток аспарагиновой кислоты)

состояние Б,. Затем открывается внутренний канал, и ионы калия выталкиваются внутрь. Новый цикл требует новой молекулы АТФ.

Натриевый насос, его активность и количество не всегда стабильны. На активность насоса влияют синтезированные в клетке вторичные посредники на образец циклического аденозинмонофосфата (цАМФ), производные арахидоновой кислоты, диацилглицерол, а также внешние регуляторы, в частности гормоны. Например, йодсодержащие гормоны щитовидной железы увеличивают активность насоса.

Работа К+-Атфазы - один из наиболее энергозатратных механизмов: в среднем для ее функционирования тратится около 24 % всей энергии клеток, а в нейронах - до 70 %.

Са2+-А ТФаза. Энергетическая емкость этого насоса гораздо выше, чем Na+-, К+-Атфазы: для выкачивания одного Са2+ расходуется две АТФ, тогда как одна АТФ расходуется для транспортировки трех №+ и двух К1. Пусковой механизм этого насоса - сам кальций, малейшее изменение внутриклеточной концентрации которого запускает процесс его откачки.

Эндо - и екзоцитоз.

В некоторых клетках организма человека происходит особый вид транспортировки, что называется ендоцитозом. В следствие эндоцитозу в клетку проникают крупные частицы. Такой путь имеет две основные формы: пиноцитоз и фагоцитоз. С помощью пиноцитоза клетка поглощает небольшие капельки растворенных питательных веществ из внеклеточной жидкости и особенно - молекулы белков. Фагоцитоз обеспечивает проникновение в клетку крупных объектов, таких как бактерии, клетки, частицы разрушенной ткани.

пиноцитоза участвует клеточная мембрана большинства клеток, но особенно характерны эти механизмы для макрофагов, около 3 % мембраны которых постоянно задействованы в образовании пузырьков (везикул). Последние в диаметре достигают около 100-200 нм.

Типичный механизм поглощения белков. На поверхности мембраны клетки, в ее углублениях, размещены рецепторы для связывания с белком. На внутренней поверхности клетки к этому участку примыкает фибрилярный протеин (его называют клотрин) с актомиозиновыми белками. Взаимодействие белка, поглощаемого с рецептором приводит к углублению ямки, а сократительные белки закрывают края, вследствие чего образуется изолированный пузырек, где вместе с соединением, поглощается, оказывается часть внеклеточной жидкости. После этого пузырек отделяется от мембраны и проникает внутрь клетки, как правило, ближе к лизосом, ферменты которых расщепляют белок, что поступил.

Благодаря фагоцитоза клетки (а это в основном тканевые макрофаги и лейкоциты) поглощают субстанции, гораздо больше белковой молекулы (рис. 8).

От начала процесса фагоцитоза происходит связывание рецептора клетки с протеином или полицукридом мембраны бактерии или погибшей клетки. Когда начинается инвагинация мембраны, то все новые и новые участки мембраны фагоцита связываются с лигандами объекта, и постепенно клетка, фагоцитирует, оказывается погруженной в него. Сократительные белки сначала замыкают перешеек, а затем продвигают везикулу вглубь клетки.

Противоположный путь - екзоцитоз - это механизм, обеспечивающий выделение из клетки ряда веществ и процессы секреции. Немало органелл внутри клетки формируют пузырьки, заполненные веществом, которое по

Последовательность этапов фагоцитоза

Рис. 8. Последовательность этапов фагоцитоза

нужно вывести из них. Типичными представителями таких соединений являются гормоны и ферменты, секретирующие железы.

Эндо - и екзоцитоз в клетках происходят непрерывно, к тому же у многих из них - достаточно интенсивно. Так, макрофаг всего за 1 час может поглощать в виде пузырьков двойную площадь поверхности своей цитоплазматической мембраны, что, естественно, должно успевать регенерировать.

Рецепторные белки.

Рецептор - это белковый комплекс, который воспринимает сигнал молекулы-передатчика. Рецептор может быть либо самостоятельной структурой, встроенной в мембрану в виде интегрального белка, или частью других функциональных белков, регулируя их активность. Причем до одного и того же химического агента на мембране могут быть несколько рецепторов. И эффект взаимодействия субстрата с рецептором может не всегда быть подобный, а в некоторых случаях даже диаметрально противоположный. Так, при взаимодействии гормона мозгового слоя надпочечников-адреналина (А) по-адренорецептором наблюдают сужение кровеносного сосуда, а с Р-рецептором - расширения.

Белки-ферменты

Немало периферических и отдельных фрагментов интегральных белков выполняют и ферментативные функции. Пример последних - указанные выше мембранные Атфазы, входящие в единую структуру ионных насосов.

Кроме того, белки-ферменты интегрального типа катализируют реакции, что, как правило, полностью перебегают с одной стороны биомембраны. К тому же, присоединив любой субстрат на одном боку, продукты реакции выделяют на противоположном. В таком случае ограниченная проницаемость мембран, обеспечивая пространственное разделение продуктов реакции, создает концентрационные градиенты.

Вторичные посредники.

Клетка имеет сложную систему внутриклеточных регуляторов активности - вторичных посредников. К ним относятся циклические нуклеотиды (цАМФ, цГМФ), кальций, кальций + кальмодулин, продукты гидролиза фосфолипидов (фосфорилированный фосфатыдилинозитол). Однако внутриклеточные системы регуляции ими не ограничиваются, выявлены новые соединения.

Вторичные посредники способствуют многочисленным изменениям в функциях клеток: превращают ферментную активность, стимулируют екзоцитоз, влияют на транскрипцию разных генов.

Все вторичные посредники активно взаимодействуют между собой. Обычно они находятся в клетке в сбалансированном соотношении, но после действия первого регулятора этот баланс нарушается, что и становится сигналом к изменению ее активности. Вторичные посредники влияют также и на чувствительность мембраны клетки к регулятору через регуляцию количества И сродства рецепторов к нему.

 
< Пред   СОДЕРЖАНИЕ   След >