Опасность напряжения шага и растекания тока при замыкании на землю

Электрическим замыканием на землю называют случайным электрическим соединением частей электрооборудования, находящегося под напряжением, непосредственно с грунтом или с металлическими нетокопроводящими часть, не изолированными от земли.

Замыкание на землю может возникнуть вследствие появления контакта между токопроводящими частями и заземленным корпусом или конструктивными частями оборудования, при падении на землю оборванного провода, при пробое изоляции оборудования высокого напряжения и др. Во всех этих случаях ток от частей, находящихся под напряжением, проходит в землю через электрод, который осуществляет контакт с грунтом. Специальный металлический электрод называют заземлением.

Размеры электрода могут быть разными (от десятков метров до сотен) его форма бывает очень сложной, и тогда закон распределения

потенциалов в электрическом поле электрода определяется сложной зависимостью. Состав, а также электрические качества почвы - неоднородны, особенно если принять во внимание шаровую его строение.

С целью упрощения картины электрического поля и его анализа предположим, что ток стекает к земле через отдельный заземлитель полушаровой формы, погруженный в однородной и изотропный почву с удельным сопротивлением р, который во много раз превышает удельное сопротивление материала заземления (рис.4.8).

Если второй электрод находится на достаточно большом расстоянии, линии тока вблизи исследуемого заземления будут направлены по радиусам от центра полушария. При этом линии тока будут перпендикулярными как к поверхности самого заземлителя, так и к любой полушария в почве, концентрической с ним.

Поскольку грунт однородный и изотропный, ток распределяется по этой поверхности равномерно. Итак, плотность тока в точке А на поверхности грунта на расстоянии х от заземлителя определяется как отношение тока замыкания С на землю к площади поверхности полушария радиусом х:

Эта поверхность является эквипотенциальной.

Для определения потенциала точки А, которая на поверхности с радиусом х, выделим элементарный слой толщиной (их. Падение напряжения в этом слое будет таким:

Потенциал точки А (или напряжение этой точки относительно земли) равен суммарному падению напряжения от точки А к земле - бесконечно удаленной точки с нулевым потенциалом:

Напряженность электрического поля в точке А определяется по закону Ома, который выражен в дифференциальной форме:

Если подставить в формулу 4.6 соответствующие значения из формул 4.4, 4.5 и 4.7, то получим:

Решение этого интеграла приводит к выражению:

Это и есть потенциал точки А, который мы искали. Если принять во внимание, что И3р / 2pх = k = const, тогда интеграл 4.8 примет вид:

Последнее выражение является уравнением гиперболы, поэтому потенциалы точек грунта в поле растекания изменяются по гиперболическому закону (рис. 4.8).

Такое распределение потенциалов объясняется формой проводника-Грунт, поперечное сечение которого возрастает пропорционально квадрату расстояния от центра заземлителя х2.

Если проводник (например проволока) имеет постоянный сечение по всей длине, то падение напряжения на любом участке будет пропорциональным длине этого участка (рис. 4.9а). Проводник, имеющий форму конуса (рис.4.96), оказывает разное сопротивление тока на разных участках одинаковой длины, так сечение этих участков является различным. Грунт вблизи заземлителя можно рассматривать как проводник конической формы с вершиной в центре заземления и углом при вершит g = сто восьмидесятого.

Самое значительное падение напряжения обнаружено около заземления, а по более отдаленных участков почвы, то они имеют больший поперечное сечение и оказывают меньшее сопротивление току.

Если точка А будет на значительном расстоянии от электрода, т.е. х> ос, ее потенциал будет равен нулю. При приближении точки А к центру электрода увеличивается и потенциал на поверхности электрода, где расстояние от центра равна х3:

Это и есть потенциал электрода или напряжение электрода относительно земли. Поскольку материал заземления (металл) имеет удельное сопротивление значительно меньше, чем почва, падение напряжения на заземлителей очень мало, и поверхность заземления можно считать эквипотенциальной. Корпус

электрооборудование будет иметь такой же потенциал, если не принимать во внимание сопротивление соединительных проводов. Напряжением корпуса электрооборудования относительно земли называют напряжение между корпусом и точками почвы, потенциалы которых могут быть приравнены к нулю.

Падение напряжения в проводнике

В кругу замыкания на землю наибольший потенциал имеет заземление. Точки, лежащие на поверхности почвы, имеют тем меньший потенциал, чем дальше они расположены от заземлителя: потенциал самых точек почвы стремится к нулю. Зону поверхности почвы, потенциал которой равен нулю, называют электротехнической землей. Плотность тока в земле также равна нулю.

Участок почвы, которая лежит вблизи заземлителя, где потенциал не равен нулю, называют полем растекания (тока).

Сопротивление заземления растеканию тока (сопротивление растеканию) можно определить как суммарное сопротивление почвы от заземления до любой точки с нулевым потенциалом (земли). Для полушаровой заземления, который содержится в однородной изотропной почве, сопротивление растеканию можно определить с рис 4.10. Сопротивление элементарного проводника или слоя почвы толщиной dх будет таким:

,

откуда сопротивление растеканию будет следующим:

Совместное решение уравнений 4.12, 4.13 дает:

Если вместо правой части уравнения 4.14, с уравнения 4Л1, подставить Яро9И, тогда получим:

Последнее уравнение вытекает также из закона Ома.

Сопротивление растекания елеменарногопровидника

Таким образом, сопротивление тока замыкания на землю оказывает грунт, находящийся в поле растекания. За пределами поля растекания почву является проводником с бесконечно большим поперечным сечением и не оказывает сопротивления току. Поэтому сопротивление заземления не зависит от расстояния между заземлителями, включенными в цепь последовательно.

Выражение 4.13 справедлив только для полушаровой заземления. Сопротивление растеканию для заземлителей других форм определяется по формулам, приведенным в приложении Ж.

Напряжение прикосновения. Для человека, который стоит на почве и касается заземленного корпуса, который находится под напряжением (рис. 4.11), напряжение прикосновения может быть определена следующим образом:

Поскольку человек касается корпуса, то потенциал руки Jр является потенциалом корпуса, или напряжение относительно земли:

Ноги человека - в точке А, и потенциал ног Jн с (4.8) составит:

На рис. (4.11) показано несколько корпусов потребителей (электродвигателей), которые присоединены к заземлителю R3. Потенциал на поверхности почвы при замыкании на корпус любого потребителя распределяется по кривой I. Потенциалы всех корпусов одинаковы, поскольку они электрически связаны между собой заземляющим проводом, падением напряжения в котором можно пренебречь.

Чтобы определить напряжение прикосновения корпуса, надо в соответствии с уравнением 4.16 с напряжения относительно земли вычислить потенциал точки грунта, на котором стоит человек. Для человека, который стоит над заземлителем, напряжение прикосновения является нулевой, так как потенциалы рук и ног одинаковы и равны потенциала корпусов. С удалением от заземления напряжение прикосновения растет, и у последнего - третьего корпуса - она равна напряжении относительно земли, поскольку человек стоит на земле и потенциал ее ног Jн равна нулю; с (4.17) имеем:

Если в выражение (4.17) подставить значения потенциала рук и ног (<р и сон), получим напряжение прикосновения:

или

Напряжение прикосновения к заземленным нетоковедущих частей, которые оказались под напряжением

В уравнении 4.21 первый множитель согласно 4.11 является напряжением корпуса относительно земли U, второй множитель определим как

Когда подставим эти значения в уравнение 4.22, найдем напряжение прикосновения в поле растекания заземлителя любой конфигурации:

Таким образом, в общем случае напряжение прикосновения является частью напряжения относительно земли, поскольку а1 ≤ 1.

Величину a1 называют коэффициентом напряжения прикосновения. Для полушаровой заземления этот коэффициент определяется по формуле 4.23. Для заземлителей другой формы, особенности для сложных грунтовых заземлителей, коэффициент а ,, который нашли расчетным путем, приводится в справочной литературе. Значение ах для любых типов заземлителей приведены в приложении И.

Выражения 4.22 и 4.23 позволяют вычислить напряжение прикосновения без учета дополнительных сопротивлений в кругу человека: сопротивление обувь Rвз, сопротивление опорной поверхности ног Rн растекание тока или сопротивление пола. Полное сопротивление цепи человека будет таким:

Напряжение прикосновения с учетом дополнительных сопротивлений в кругу человека:

или

где a2 - коэффициент, учитывающий падение напряжения в дополнительных опорах круга человека:

Коэффициент a2 может быть определено, если известны дополнительные опоры. Значение сопротивления обувь может быть в широких пределах (от нескольких омов в нескольких мегаомах), поэтому во внешней электрооборудовании, а также во влажных помещениях сопротивлением обувь можно пренебречь.

Сопротивление опорной поверхности ног можно определить, если представить ноги человека двух полушаровой заземления (радиусом хн) (рис. 4.12), включенных параллельно, тогда

где ре - удельное сопротивление поверхностного слоя почвы; хн - эквивалентный радиус опорной поверхности ног (хн = 7 см).

распределение потенциалов в поле растекания одиночного заземлителя

С любым приближением можно использовать эти уравнения и для учета сопротивления пола, на котором стоит человек.

Ток через человека при прикосновении к заземленным нетоковедущих частей, которые оказались под напряжением, определяется из уравнения 4.26. Если принять во внимание, что

получим:

Коэффициент a1 зависит от расстояния между точкой, на которой стоит человек, и заземлением. Если человек стоит над заземлителем (х = хг), тогда a1 = 0, напряжение прикосновения и ток через человека также равны нулю. Человек, который стоит на земле вне поля растекания (х> 20 м), попадает под напряжение прикосновения, равной напряжению относительно земли (если не принимать во внимание коэффициент a2).

Напряжение шага. Человек, который находится в поле растекания заземлителя, оказывается под напряжением шага, если ее ноги - в точках с разными потенциалами. На рис.4.13 показано распределение потенциалов в поле растекания одиночного заземлителя. Напряжение прикосновения определяется как разность потенциалов между точками А и Б:

Поскольку точка А удалена от заземления на расстояние х, потенциал ее данным уравнения 4.10 при полушаровой заземлителей составит

напряжение шага

Точка Б отстоит от заземления дальше, чем точка А, на размер шага человека а поэтому расстояние между заземлением и точкой Б равна х + а, а отсюда потенциал точки Б определяется как

Отсюда напряжение шага

или

Из уравнения 4.10 имеем:

и поэтому напряжение шага

Уравнение 4.37 можно записать как

где β1 - коэффициент напряжения шага, учитывающий форму потенциальной кривой.

Для полушаровой заземления этот коэффициент составит:

Для заземлителей другой формы, и особенно для грунтовых, уравнение для определения коэффициента рх будет сложнее. Значение его приведены в приложении И.

Напряжение шага, как и напряжение прикосновения, зависит от сопротивления опорной поверхности ног и сопротивления обуви. Влияние этих сопротивлений учитывается коэффициентом

Очевидно, дополнительное сопротивление в кругу человека, попавшего под напряжение шага (рис. 4.13), отличается от дополнительных сопротивлений в кругу человека, попавшего под напряжение прикосновения. Так, сопротивление опорной поверхности ног

Сопротивление обувь при напряжении шага также в 4 раза больше подобного сопротивления при напряжении прикосновения. Поэтому можно предположить, что β2 - α 2/4.

Окончательно по аналогии с напряжением прикосновения напряжение шага будет такой:

Ток через человека, попавшего под напряжение шага, определяется, как и для напряжения прикосновения:

Уравнение 4.43 и является зависимостью протекания тока через человека, попавшего под напряжение шага, от тока замыкания на землю: Ih = φ (С)

Коэффициент напряжения шага, учитывающий форму потенциальной кривой β1 зависит от формы и конфигурации заземления и положение относительно заземления той точки, в которой он определяется. Чем ближе к заземлителю, тем больше β1. И если человек стоит над заземлителем, β1 принимает максимальное значение. Человек, который находится вне поля растекания заземлителя (на земле х -> ¥), совсем не попадает под напряжение шага, поскольку β1 = 0, и U к = 0 Напряжение шага может быть равна нулю, если обе ноги человека располагаются на эквипотенциальных линии.

Следует отметить, что зависимость напряжения шага от расстояния до заземления противоположной зависимости для напряжения прикосновения, которая растет с увеличением расстояния. Если сравнить коэффициенты α1 и β1, которые учитывают форму потенциальной кривой (для полушаровой заземления), то максимальное значение β1 будет меньше такого же значения α 1. Наибольший коэффициент напряжения прикосновения при х -> ¥ равен единице. Наибольшее напряжение шага наблюдается вблизи заземлителя, особенно если человек стоит одной ногой над заземлителем в точке с потенциалом, равным Uз = 0, а второй - на расстоянии шага от заземления, при этом х = Хзи

Таким образом, без учета дополнительных сопротивлений в кругу человека, максимальное напряжение шага меньше, чем напряжение прикосновения. Если принять во внимание, что больше α1 <β1, то напряжение шага оказывается значительно меньше напряжения прикосновения.

Кроме того, протекание тока по нисходящей петли "нога - нога" безопаснее, чем петля "рука - рука". Однако замечено немало случаев поражения людей под действием напряжения шага. Это объясняется тем, что под действием тока в ногах возникают судороги и человек падает, а после падения круг тока замыкается вдоль ее тела сквозь дыхательные мышцы и сердце, причем человек может замкнуть точки с большей разностью потенциалов, поскольку ее рост всегда является больше длину ее шага.

Допустимые токи и напряжения были определены с учетом критерия электробезопасности профессора А.П. Киселева, согласно которому:

где Q - критерий электробезопасности, мА * с; Ih - ток через тело человека, А; t - длительность протекания тока, с.

Профессор Киселев установил: если произведение тока, Ih, который протекает через человека, за время протекания т не превышает 50 ... 65 мА * с, то это обеспечивает безопасность с достаточно малой вероятностью поражения.

Вычисленные с учетом критерия допустимые токи и напряжения предназначены для использования при расчетах защитных устройств от поражения электрическим током - защитных заземлений, зануленных т.

 
< Пред   СОДЕРЖАНИЕ   След >