Методы прогнозирования продаж товаров

Прогнозирование - важная часть процесса управления. Без него невозможно разрабатывать ни тактические, ни стратегические планы развития предприятия. Как для торгового, так и для производственного предприятия важно предсказания продаж товаров на следующий период. От этого будет зависеть объем и создаваемых запасов, и аккумулированных для этого денежных средств.

Теме прогнозирования уделяют внимание многие ученых и практиков. Необходимо отметить среди них Ю.И. Рыжикова [1] , который, собственно, создавал в то время еще советскую школу теории запасов. Ученому удалось системно и последовательно изложить базовые теоретические положения теории очередей, дать практические рекомендации по оптимизации сложных систем сбыта, уменьшение времени обслуживания, ликвидации избыточных запасов. Это очень мощное научное исследование. Впрочем для ознакомления с методами прогнозирования на уровне первичного представления целесообразно будет воспользоваться базовыми положениями (методологии прогнозирования) и некоторой литературой по этому вопросу [2] .

Под методологией прогнозирования понимают отрасль знаний о методах, способах и системы прогнозирования, а именно:

• метод прогнозирования - способ исследования объекта, направленный на разработку прогноза;

• методика прогнозирования - совокупность одного или нескольких методов прогнозирования;

• система прогнозирования - упорядоченная совокупность методик прогнозирования и средств их реализации.

Известно, что теория прогнозирования включает: анализ объекта прогнозирования; методы прогнозирования (математические - формализованные, экспертные - интуитивные) системы прогнозирования.

В работе по теории прогнозирования при анализе объектов применяют классификацию прогнозов, при этом в качестве основных признаков выступают: масштабность - количество главных переменных для описания объекта; сложность - характеризует степень взаимосвязи переменных детерминированность или стохастичность переменных информационная обеспеченность периода ретроспекции. Одной из главных классификационных признаков также период прогноза. Исходя из этого, большинство авторов определяет три вида прогнозов: краткосрочные, среднесрочные и долгосрочные. Как отмечалось ранее, временные интервалы прогнозов зависят от природы объекта (мы уже приводили пример выше - по выбору периода для проведения АВС-ХУZ-анализа).

По двум группам методов прогнозирования, то эвристические методы базируются на интуитивных оценках, которые формулируются экспертами (менеджерами соответствующих направлений). Среди эвристических: индивидуальные - метод интервью, генерации идей; коллективные - метод простого ранжирования, метод весовых коэффициентов, метод последовательных сравнений, метод парных сравнений; комбинированные - метод "Дельфи" и его модификации.

Среди математических методов различают три группы: симплексные (простые) методы экстраполяции по временным рядами - метод наименьших квадратов, экспоненциальное сглаживание и тому подобное; статистические методы - корреляционный и регрессионный анализ, факторный анализ и др; комбинированные методы - синтез различных вариантов прогнозов.

В табл. 4.9 приведены общие рекомендации по выбору метода прогнозирования [3] .

Метод " наивного " прогноза основывается на условии, что продажи в следующем периоде будут равны продажам предыдущего периода.

Например, если продажи за январь составили 100 единиц, то, соответственно, прогноз продаж на февраль составит также 100 единиц. Или если продажи сегодня составляли 50 единиц, то прогноз продаж на завтра будет также 50 единиц. Чаще всего такой метод применяют магазины хлебобулочных изделий и работающих с товарами (запасами) устойчивого спроса - то есть X категории.

К достоинствам этого метода можно отнести моментальную реакцию на изменения спроса, но только при условии наличия тренда. К недостаткам - значительное чувствительность к случайным колебаниям. Среди оговорок необходимо назвать чрезвычайную чувствительность этого метода.

Таблица 4.9.

Общие рекомендации по выбору метода прогнозирования

метод

прогнозирования

Наличие

тренда

наличие сезонности

Требования к минимальному количеству данных

прогноз возможен

несезонные

сезонные

На один шаг

На несколько шагов

экспертный

не обязательно

не обязательно

0

0

так

так

наивный

Да / нет

Да / нет

1

__ ***

так

ни

экспоненциальное

сглаживания

(Простое)

ни

ни

2

__

так

ни

арифметическое

сглаживания

ни

ни

4

-

так

ни

метод Хольта

так

ни

3, 10

__

так

Нет / да

Метод экспоненциальных средних (метод Брауна)

так

ни

3

__

так

Да *

экстраполяция

тренда

так

Нет / да

3

ИВТ *

так

Да *

метод Винтерса

так

так

-

2 х Т

так ***

Комбинированный прогноз (оценка среднего значения)

Да / нет

Да / нет

1

так

ни

Комбинированный прогноз (оценка среднего значения и отклонения)

Да / нет

Да / нет

3

так

ни

* Прогноз на несколько шагов возможен при соблюдении соотношения длины передпрогнозного периода и периода прогнозирования 3: 1.

** Т - периодичность сезонности.

*** Прогноз на один период, вмещающий сезонность (например, на 1 год ежеквартально).

**** "-" - Метод не применим для учета сезонности.

Дело в том, что основывать прогноз на двух точках не всегда правильно. Представим себе ситуацию, когда в определенной точке сбыта товар был распродан лишь благодаря посещению экскурсионной группой определенного памятника архитектуры, расположенного рядом. Прогноз заказ на следующий период - сутки или месяц - с учетом такого разового пикового всплеска неправильно. Поэтому его необходимо применять только при наличии устойчивого тренда при условии исключения разовых пиковых всплесков потребительской активности.

Арифметическое сглаживания (метод долгосрочной средней) предусматривает, что продажи в следующем периоде будут равняться средней арифметической продаж за все предыдущие периоды.

Например, продажи за 2011 г.. Составляли 10000 единиц. Тогда прогнозное значение на январь 2012 составит: 10000: 12 = 834 единицы. Реальные продажи за январь составили 500 единиц. Тогда прогнозное значение на февраль 2012 будет: (10000 + 500) :( 12 + 1) = 808 единиц. И так далее, каждый раз добавляя новое значение реальных продаж к прежним значениям и деля полученную сумму на количество всех периодов.

К достоинствам метода можно отнести сглаживания случайных колебаний. Этот метод просто не видит их, поскольку влечет всю статистику предыдущих периодов. Собственно это и недостатком, поскольку метод таким образом не отражает изменения в тенденциях, всегда реагирует с задержанием на существенные колебания спроса. Но, если точка сбыта товара имеет свободные складские площади и договор с поставщиком составлен так, что по завершении периода продажи все расходы по реверсной логистикой (то есть расходы на отзыв непроданных товаров из точек) возложена на поставщика, то точка сбыта таким образом имеет 100- процентную защиту от колебаний спроса и несет умеренные расходы на содержание.

Метод скользящей средней (метод Хольта - Винтерса) является усовершенствованным методом экспоненциального сглаживания временного ряда. Экспоненциальное сглаживание обеспечивает наглядное представление о тренде и позволяет делать краткосрочные прогнозы, а при попытке распространить прогноз на больший период показывает абсолютно бессмысленные значения: создается впечатление, что развитие процесса в сторону увеличения или уменьшения совсем прекратился. Более совершенным является метод Хольта - Винтерса, успешно справляется и со среднесрочными и долгосрочным прогнозам, поскольку он способен проявлять микротренды (тренды, связанные с короткими периодами) в моменты времени, непосредственно предшествующих прогнозным, и экстраполировать эти тренды на будущее . И хотя возможна только линейная экстраполяция в будущее, в большинстве реальных ситуаций ее оказывается достаточно.

Итак, метод основывается на условии, что продажи в следующем периоде будут равняться средней арифметической от объема продаж за предыдущие n-периода. Главное - выбирать оптимальное значение количества предыдущих периодов для получения корректных прогнозов. Вообще в зависимости от объекта исследования - конкретной позиции, товара, запаса, группы - можно выбирать 2, 5, 6, 10, 12 периодов. Пример расчета приведен в табл. 4.10.

Таблица 4.10.

Пример расчета прогнозного значения методом скользящей средней (период - с месяца)

месяц

реальные

продажи

расчет

прогнозное

значение

январь

100

февраль

80

март

120

апрель

60

(100+ 80 + 120): 3

100

май

90

(80 + 120 + 60): 3

87

Таблица 4.11.

Прогнозирование продаж товаров сезонного спроса

месяц

2009

2010

2011

январь

1

3

2

февраль

2

5

3

март

3

3

6

апрель

5

8

11

май

18

20

24

июнь

45

60

?

июль

48

50

Источник : Бузукова ЭЛ. Закупки и поставщики. Курс управления ассортиментом в рознице / Е.А. Бузукова; под ред. С. Сысоевой. СПб. : Питер, 2009. - 432 с. : Ил. - (Розничная торговля).

Как видим, этот метод является компромиссным между предыдущими двумя. Он достаточно гибкий и реагирует на резкие изменения в продажах достаточно быстро, однако не мгновенно.

Метод экспоненциальной средней взвешенной схож с предыдущим, но с применением определенных значений коэффициента (ИС), который принимает значения от 0 до 1. В случае, когда речь идет о запасах (товары) с постоянным плавным трендом, то значение этого коэффициента равно 0,1 -0,2. Для запасов, имеющих слишком сильные колебания, и £ = 0,5 и выше. Приведем пример [4] . Пусть спрос на продукцию в точке сбыта на продукцию А является постоянным. Итак, К = 0,2. За январь было реализовано 300 единиц товара, прогноз по ним был на уровне 290 единиц. Таким образом, прогноз заказ товара будет на уровне 0,2 • 300 + (1 - 0,2) • 290 = 292 единицы.

К преимуществам метода относят то, что он базируется на предыдущих, ближайших к отчетного периода данных, гибко реагирует на изменения. К недостаткам относится то, что все данные всех периодов имеют одинаковый вес.

Это облегченные для восприятия основные подходы, на которых базируются определенные методы прогнозирования. Для прогнозирования продаж товаров сезонного спроса на практике используют другой подход, основанный на коэффициенте тенденции. Этот коэффициент показывает, насколько изменились продажи по сравнению с предыдущими годами. Но в целом за год, как было показано в предыдущих примерах, а только по определенному периодом - высоким сезонным всплеском продаж. Итак, для прогнозирования продаж товаров сезонного спроса необходимо сравнивать аналогичные периоды прошлых лет и корректировать полученные данные с учетом экспертных оценок. Сравнение периодов необходимо для учета изменения в тенденциях - фиксации роста или уменьшения спроса по сравнению с аналогичными периодами прошлых лет (табл. 4.11). Сделать это помогает коэффициент тенденции (КД:

где Х1 - данные за отчетный период;

Х2 - данные за предыдущий период.

Для определения прогноза на июнь 2011 необходимо определить изменения по годам. Рост потребления за период март

- Июнь 2009 составил: 26 единиц (3 + 5 + 18), за 2010

- 31 единица, за 2011г. - 41 единица:

Тенденция увеличения продаж в последние годы не изменилась - продажи имеют устойчивый тренд роста. Применив Кт до отчетного периода, получим прогнозное значение продаж на июнь 2011 г .: 60 + 32% = 79 единиц.

Бытует мнение, что такие расчеты всего удовлетворяют разработку прогнозов для групп С Z , BZ [5] . Считается также, что для товаров, имеющих значительные продажи, такой подход - корректировка на аналогичные периоды прошлых лет - достаточно достоверным.

В бизнес-практике иногда применяют подход " коэффициентов ", который, собственно, также основывается на данных о продажах за предыдущий год. Сущность его заключается в том, что среди всех периодов продаж за год находят наименьшее значение, которому задают коэффициент, равный 1,0. Все остальные периоды получают собственные значения коэффициентов, отталкиваясь от 1,0. Например: известно месячные значения продаж товаров за 2012 г.., И установлены соответствующие коэффициенты (для февраля = 300 200 = 1,5 и т. Д.):

январь

200

1

февраль

300

1,5

март

450

2,25

апрель

500

2,5

май

600

3

июнь

800

4

июль

1000

5

август

800

4

сентябрь

500

2,5

октябрь

650

3,25

ноябрь

900

4,5

Декабрь

1500

7,5

январь

250

февраль

375

(250 * 1,5)

март

562,5

(250 * 2,25)

апрель

625

(250 * 2,5)

май

750

июнь

1000

Итак, план продаж на следующий год будет корректироваться с учетом коэффициенты и может составлять по месяцам следующие данные (в зависимости от продаж за январь):

июль 1250

август 1000

сентябрь 625

октябрь 812,5

ноябрь 1125

декабрь 1875

Этот подход достаточно легкий для понимания, благодаря чему его

собственно, и используют в основном для формирования планов продаж на следующий год, но несколько несовершенен.

Правило полтора ( "Правило 1,5") чаще всего используют в розничной торговле торговые агенты или если предприятие начинает работать с новым товаром, за которым нет никакой статистики продаж. Для того чтобы определить объем заказа на следующий период (день, неделя, месяц), необходимо соблюдать шага 1,5. Например, первая поставка была в количестве 33 единиц. Продажи за неделю составили 25 единиц, соответственно остаток - 8 единиц. За "Правилом 1,5", следующий объем поставок должен быть: 251,5-8 = 29,5 "30 единиц. Это можно записать в виде следующей формулы:

где замнут - новый объем заказа, шт .;

СПП - остатки на начало отчетного периода, шт .;

Постп - поставка в отчетном периоде, шт .;

ЗКП - остатки на конец отчетного периода, шт.

Логика, заложенная в это правило, проста: целью любого коммерческого предприятия является увеличение (!) Дохода, а не его постоянство. Таким образом, предприятие постоянно закладывает рост продаж, увеличивая его наполовину от предыдущего значения, одновременно корректируя на остаток. Такой подход позволяет достаточно динамично отслеживать продажи и корректировать остатки, не приводит ни к накоплению (затоваривание), ни к отсутствию запаса (резерва). Проиллюстрируем это примером (табл. 4.12).

Итак, первый заказ партии товара находилось на уровне 33 единицы, из них 25 было продано и 8 в остатке. Следующий заказ был сделан в объеме ЗО единиц. Представим ситуацию, что продажи составили 28 единиц и в остатке, соответственно, осталось 10 единиц. За "Правилом 1,5", объем заказа на следующий, третий период будет составлять 32 единицы (28 * 1,5 - 10). В третьем периоде с 32 заказанных единиц было продано 22 остаток равен также 20 единиц

Таблица 4.12.

Пример движения запасов при использовании Правила полтора

Остатки на начало отчетного периода, шт.

Заказ на поставку, шт.

Продажи в отчетном периоде, шт.

Остатки на конец отчетного периода, шт.

расчет

-

33

25

8

(0 + 33-8) - 1,5-8 = 30

8

со

28

10

(8+ 30-10) -1,5-10 = 32

10

32

22

20

(10+ 32-20) -1,5-20 = 13

20

13

28

5

(20 + 13-5) - 1,5-5 = 37

5

37

(10 - с предыдущего периода и еще 10 из этого). Итак, на четвертый период объем заказа должен составлять лишь 13 единиц (22 • 1,5 - 20) и т. Д. Соответственно, это не приведет к затоваривания, и товары, остались, будут также реализованы. Пока не будет определенной определенной динамики продаж - это довольно интересный способ определения объемов заказа и контроля за остатками. Одно только замечание: при предыдущих заказах 33, 30, 32 шт. может произойти ситуация, когда поставщик не захочет удовлетворять партию в 13 единиц, поскольку у него определен так называемый целевой размер заказа, о чем пойдет речь далее.

Вообще вопросу применения методов прогнозирования запасов в зависимости от уровня стохастичности (меры неопределенности в его поведении) посвящено много научно-практической литературы. В нашем случае можно сказать, что ни один из методов не даст 100 % правильных результатов, то есть не обеспечит прогнозируемость на 100%, что позволит свести к нулю отклонения между прогнозируемыми значениями и реальными продажами. Метод прогнозирования для каждого конкретного запаса должен избираться по критерию минимального отклонения между прогнозом и фактом (в нашем примере - реальными продажами). Соответственно, чтобы остановиться на определенном методе прогнозирования, необходимо провести расчеты по нескольким и выбрать среди них один, содержащий самые погрешности. Но обязательно делать планирования, ведь, как говорил Дуайт Эйзенхауэр, "готовясь к бою, я всегда убеждался, что планы бесполезны, но планировать необходимо!".

  • [1] Рыжиков Ю.И. Теория очередей и управление запасами / Ю.И. Рыжиков. - СПб. : Питер, 2001. - 384 с. : Ил. - (Учебники для вузов).
  • [2] Бузукова ЭЛ. Закупки и поставщики. Курс управления ассортиментом в рознице / Е.А. Бузукова; под ред. С. Сысоевой. - СПб. : Питер, 2009. - 432 с. : Ил. - (Розничная торговля); Лукинский В.С. Логистика / В.С. Лукинский, И.А. Цвиринько, Ю.В. Малевич. - СПб. : Изд-во СПбГИЭА, 2000; Шрайбфедер Дж. Эффективное управление запасами: пер. с англ. / Дж. Шрайбфедер. - Второй изд. - М.: Альпина Бизнес Букс, 2006. - 304 с.
  • [3] Лукинский В.С. Логистика / В.С. Лукинский, И.А. Цвиринько, Ю.В. Малевич. - СПб. : Изд-во СПбГИЭА, 2000.
  • [4] Бузукова ЭЛ. Закупки и поставщики. Курс управления ассортиментом в рознице / Е.А. Бузукова; под ред. С. Сысоевой. - СПб .: Питер, 2009. - 432 с. : Ил. - (Розничная торговля).
  • [5] 1 Бузукова ЭЛ. Закупки и поставщики. Курс управления ассортиментом в рознице / Е.А. Бузукова; под ред. С. Сысоевой. - СПб .: Питер, 2009. - 432 с. : Ил. - (Розничная торговля).
 
< Пред   СОДЕРЖАНИЕ   След >