Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow Основы теории вероятности

Классическое определение вероятности (теория урн)

Вероятностью Р(А) события А называется отношение числа m результатов (исходов) эксперимента, благоприятствующих появлению события А, к числу n всех равновозможных результатов эксперимента:

(2.1)

При этом .

Например, вероятность выпадения числа при одном бросании правильной монеты равна 1/2.

Задачи

Используя формулы и результаты решения задач раздела 1, решим задачи на вычисление вероятности события (по классическому определению).

Задача №10. В урне 3 синих, 8 красных и 9 белых шаров, не различимых на ощупь. Шары тщательно перемешаны. Наудачу достают 1 шар. Найти варианты событий: извлечённый шар красный (событие А), синий (событие B), белый (событие С).

Решение. Всего исходов эксперимента, состоящего в извлечении одного шара, 20=3+8+9, т.е. в формуле (2.1), n=20. Событию А благоприятствует 8 исходов, т.е. mА=8, аналогично mВ=3, mС=9.

По формуле (2.1) имеем:

Примечание. Если сложить полученные вероятности, то получим 1, т.е. Р(А) + Р(В) + Р(С) = 1, что говорит о том, что А, В и С составляют полную группу событий (см. раздел 3).

Задача №11. В расписании 3 лекции по разным предметам. Всего на курсе изучается 10 предметов. Какова вероятность того, что студент, не знакомый с расписанием, угадает его, если все варианты составления расписания на день равновозможные.

Решение. Всего комбинаций из 3-х предметов, выбранных из 10 и отличающихся друг от друга хоть одним предметом или порядком их следования, т.е. размещений из десяти элементов по три, можно получить:

.

Нам нужна только одна комбинация вероятность угадать расписание:

.

Задача №12. На 8-ми одинаковых карточках написаны 2, 4, 6, 7, 8, 11, 12, 13. Найти вероятность того, что образованная из 2-х чисел дробь сократима.

Решение. Всех исходов столько, сколько есть вариантов выбора двух карточек из 8 одинакового формата . Из них только карточек благоприятствуют событию А, т.к. только 5 чисел 2, 4, 6, 8, 12 сократимы .

.

Задача №13. Из 60 экзаменационных вопросов студент подготовил 50. Найти вероятность того, что вытянутый билет из 2 вопросов будет состоять из подготовленных вопросов.

Решение.

Задача №14. Из 30 карточек с буквами русского алфавита наудачу выбирают 4 карточки. Чему равна вероятность того, что эти 4 карточки в порядке выхода составят слово "небо"?

Решение.

15.

Задача №15. На полке расставлено наудачу 10 книг. Определить вероятность того, что 3 определённые книги окажутся рядом.

Решение.

.

Пояснение. При вычислении m три указанные книги принимаем за одну.

Задача №16. В лотерее 1000 билетов. Из них 500 выигрывают, 500 проигрывают. Куплено 2 билета. Найти вероятность того, что оба билета выиграют.

Решение. Пусть случайное событие А={2 билета выигрывают}, тогда:

Задача №17. Наудачу выбирается 5-тизначное число. Какова вероятность события:

А = {число симметрично относительно центральной цифры};

В = {число кратно 5};

С = {число состоит из нечётных цифр}.

Решение. Всего пятизначных чисел: (правило произведения).

Задача №18. В коробке 15 одинаковых изделий, 5 из них окрашены. Наугад извлекают 3 изделия. Найти вероятность того, что

a) все 3 изделия окрашены;

b) одно изделие окрашено.

Решение. Рассмотрим события:

А1 = {все 3 изделия окрашены};

А2 = {из всех 3 изделий только 1 окрашено}.

Задача №19. Среди 12-ти студентов, 7 из которых девушки, раздают 5 билетов. Найти вероятность того, что среди обладателей билетов будут 3 девушки (событие А).

Решение.

Задача №20. Из колоды карт (36 штук) наудачу извлекают 3 карты. Найти вероятность того, что среди них окажется туз.

Решение.

.

Задача №21. Из 10 изделий, из которых 3 бракованные, наудачу извлекают три изделия для контроля. Найти вероятность того, что:

a)в полученной выборке все изделия бракованные;

b)в полученной выборке 2 изделия бракованные.

Решение.

А={в полученной выборке все изделия бракованные};

B={в полученной выборке 2 изделия бракованные};

.

Задача №22. Дано пять отрезков, длины которых составляют соответственно 1, 3, 5, 7, 9. Определить вероятность того, что из взятых наудачу 3-х отрезков из данных пяти можно построить треугольник (событие А).

Решение. Всего отобрать 3 отрезка из заданных 5-ти можно вариантами, т.е. ; благоприятных (ab>c или a-b<c) только 3: (3,5,7), (3,7,9), (5,7,9)

.

Задача №23. Кандидаты в студенческий совет: 3 - от I-го курса, 5 - от II-го, 7 - от III-го. Выбираются наудачу 5 человек на конференцию. Найти вероятность того, что делегация будет состоять из 1-го первокурсника, 2-х второкурсников, 2-х третьекурсников.

Решение. Пусть А = {делегация состоит из 1-го первокурсника, 2-х второкурсников, 2-х третьекурсников}.

Тогда:

Задача №24. Наугад выбирают 6 клеток из 49 (спортлото). Найти вероятность того, что будет правильно угадано 3 клетки (событие А), 6 клеток (событие В).

Решение.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее