Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow Основы теории вероятности

Формула Байеса (формула переоценки вероятности гипотез)

Пусть событие А может наступить лишь при условии появления одной из гипотез (см п.4.1). Если событие А уже произошло, то вероятности гипотез могут быть переоценены по формуле Байеса:

(4.2)

Задачи

Задача №53. 70% населения обследуемого региона имеет только среднее образование, среди которых 10% безработных, 30% населения - с высшим образованием, среди них 2% безработных. Если выбранный наугад человек является безработным, то какова вероятность того, что он закончил ВУЗ?

Решение. В качестве гипотезы примем:

Н1 = {выбранный наугад человек со средним образованием};

Н2 = { выбранный наугад человек со высшим образованием }.

Р(Н1) = 0,7; Р(Н2) = 0,3.

Пусть соб. А = {выбранный наудачу человек безработный}, тогда

P(A/H1) = 0,1, P(A/H2) = 0,02.

Нужно определить P( ) по формуле (4.2).

Имеем:

Задача №54. На сборочный конвейер поступили детали с 3-х станков, производительность которых неодинакова: I-го - 50% плана, II-го - 30% плана, III-го - 20% плана. Вероятность получения годного узла равна 0,92, если деталь I-го станка, 0,95,если деталь со II-го станка, 0,82, если деталь с III-го станка. Определить вероятность того, что в сборку попали детали, изготовленные на первом станке, если узел годный.

Решение. А = { узел годный};

Н1 = {деталь с I-го станка};

Н2 = {деталь со II-го станка};

Н3 = {деталь с III-го станка};

Р(Н1)=0,5; Р(Н2)=0,3; Р(Н3)=0,2.

Р(А/Н1)=0,92; Р(А/Н2)=0,95; Р(А/Н3)=0,82.

Задача №55. 30% приборов собирают специалисты высокой квалификации, 70% - средней квалификации. Надёжность работы прибора, собранного специалистом высокой квалификации - 0,9, а специалистом средней квалификации - 0,8. Взятый наугад прибор оказался надёжным. Определить вероятность того, что прибор собран специалистом высокой квалификации.

Решение.

Пусть событие А = {прибор работает безотказно}.

До проверки прибора возможны 2 гипотезы:

Н1 = {прибор собран специалистом высокой квалификации};

Н2 = { прибор собран специалистом средней квалификации }.

Р(Н1) = 0,3, Р(Н2) = 0,7.

Условные вероятности события А равны:

P(A/H1) = 0,9, P(A/H2) = 0,8.

Пусть событие А произошло, тогда

.

Задача №56. Из 10 учащихся, которые пришли на экзамен по математике (нужно было подготовить 20 вопросов), трое подготовились на отлично (выучив по 20 вопросов), четверо - на хорошо, выучив по 16 вопросов, двое - на удовлетворительно, выучив по 10 вопросов, один не готовился и может ответить на 5 вопросов из 20. В билете 3 вопроса. Первый ученик ответил на все 3 вопроса своего билета. Какова вероятность того, что этот ученик подготовился на отлично?

Решение. Пусть событие А = {1-й ученик ответил на 3 вопроса} и гипотезы:

Н1 = {1-й ученик подготовлен на 5};

Н2 = {1-й ученик подготовлен на 4};

Н3 = {1-й ученик подготовлен на 3};

Н4 = {1-й ученик подготовлен на 2}.

P(H1) = 0,3; P(H2) = 0,4; P(H3) = 0,2; P(H4) = 0,1

P(А/H1) = 1 (событие {1-й ученик ответил на 3 вопроса, при условии, что он выучил 20 из 20}, является достоверным).

(вероятность правильного ответа на 1-й вопрос равна 16/20, на 2-й - 15/19, на 3-й - 14/18).

По формуле (4.2) имеем:

Вывод: учителю придётся предложить ученику ещё дополнительные вопросы.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее