Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow Анализ показателя реадмиссии

Заключение

В ходе данной работы была выполнено построение моделей с помощью нескольких алгоритмов классификации методов машинного обучения. В качестве инструментальных методов реализации поставленной задачи был выбран программный продукт PyCharm, представляющий собой среду разработки на языке программирования Python. В данной программе был проведен первоначальный анализ данных с помощью методов boxplot, позволяющий выявить выбросы выборки, а также такие показатели, как минимальное и максимальное значение, медиана; и анализа ANOVA, позволяющего вычислить зависимости и корреляции между переменными начального dataset. Для создания модели использовались наиболее подходящие классификаторы с оптимальными для данной выборки параметрами - метод рандомного леса, k-ближайщих соседей, наивный Баесовский классификатор и логистическая регрессия. Далее была проведена оценка точности работы классификаторов с помощью методов скользящего контроля (кросс-валидация) и ROC-кривых, наилучшим образом себя показала логистическая регрессия, поэтому именно она была выбрана для дальнейшего построения модели. После разработки модели были выявлены значимые показатели, влияющие на целевую переменную - реадмиссия зависит от первичного диагноза пациента, его пола, возраста, количества проведенных лабараторных испытаний, а также от назначенных лекарств, а именно глипизида и пиоглитазона. Для удобства конечных пользователей программы в среде разработки QtDesigner был разработан интерфейс пользователя, позволяющий предсказать реадмиссию для каждого нового пациента. В качестве дальнейших перспектив развития данной работы может быть рассмотрена рекомендательная модель для медицинских учреждений, позволяющая подобрать оптимальное лечение для каждого конкретного пациента. Рекомендательная модель включает в себя потенциал учета большого количества внешних факторов, влияющих на возможность применения рекомендуемых методов лечения (бюджетные средства, особенности географической области применения, доступность необходимых лекарственных средств и др.), а также непосредственно возможность подбирать для каждого пациента индивидуальную программу лечения.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее