Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow О теории вероятностей

Интегральная функция распределения и ее свойства

Для непрерывной случайной величины X вероятность Р(Х= xi)>0, поэтому для НСВ удобнее использовать вероятность того, что СВ Х<хi, где хi- текущее значение переменной. Эта вероятность называется интегральной функцией распределения: P(X<xi)=F(x).

Интегральная функция является универсальным способом задания СВ (как для ДСВ, так и для НСВ).

Свойства интегральной функции распределения:

1) F(x) не убывает (если х2>x1, то F(x2)?Р(х1));

2). F(-?)=0;

3). F(+?)=1;

4) вероятность попадания СВ X в интервал а<Х<b определяется по формуле

P(a?X<b)=F(b)-F(a).

Замечание. Обычно для определённости левую границу включают в интервал, а правую нет. Вообще для НСВ верно, что

Р(а?Х<b)= Р(а <Х?b) =Р(а<Х < b)= Р(а?X?b).

Основные теоремы теории вероятностей

Теорема1.

Вероятность суммы двух несовместных событий А и В равна сумме их вероятностей:

Р(А+В)=Р(А)+Р(В).

Следствие1.

Если А12, …, Аn - попарно несовместные события, то вероятность их суммы равна сумме вероятностей этих событий.

Следствие2.

Вероятность суммы попарно несовместных событий А12, …, Аn , образующих полную группу, равна 1.

Следствие3.

События А и А несовместны и образуют полную группу событий, поэтому

Р(А +А) = Р(А) + Р(А) = 1. Отсюда Р (А) = 1 - Р(А).

Теорема2.

Вероятность суммы двух совместных событий А и В равна сумме вероятностей этих событий без вероятности их произведения:

Р (А+В) = Р(А)+Р(В) - Р (А*В).

Два события А и В называются независимыми, если появление одного из них не влияет на вероятность появления другого (в противном случае события зависимы).

Теорема3.

Вероятность произведения двух независимых событий равна произведению их вероятностей Р(А*В)=Р(А)*Р(В).

Следствие.

Вероятность произведения n независимых событий А12, …, Аn равна произведению их вероятностей.

Условной вероятностью события В при условии, что событие А уже произошло, называется число Р(АВ)/Р(А)=Р(В/А)РА(В).

Теорема4.

Вероятность произведения двух зависимых событий А и В равна произведению вероятности наступления события А на условную вероятность события В при условии что событие А уже произошло:

Р(А*В) =Р(А)*Р(В/А).

Следствие.

Если события А и В независимы, то из теоремы 4 следует теорема 3.

Событие В не зависит от события А, если Р(В/А) = Р(В). Теорему 4 можно обобщить на n событий.

Теорема5.

Вероятность произведения n зависимых событий А12, …, Аn равна произведению последовательных условных вероятностей:

Р(А12*…*Аn-1*An)= P(A1)*P(A2/A1)*...*P(An/A1*A2*...*An-1).

Теорема6.

Вероятность наступления хотя бы одного из событий А12, …, Аn равна разности между единицей и вероятностью произведении отрицаний событий А12, …, Аn :

Р(А)=1-Р(А12*…*Аn)=1- P(A1)*P(A2/A1)*...*P(An/A1*A2*...*An-1).

Следствие1.

Вероятность наступления хотя бы одного из событий А12, …, Аn независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий:

Р(А)=1-Р(А1)Р(А2)…Р(Аn).

Следствие2.

Если события А12, …, Аn независимы и имеют одинаковую вероятность появиться (Р(А1)=Р(А2)=…Р(Аn)= р, Р(Аi)= 1-р=q ), то вероятность появления хотя бы одного из них равна Р(А)=1-qn .

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее