Интегральная функция распределения и ее свойства
Для непрерывной случайной величины X вероятность Р(Х= xi)>0, поэтому для НСВ удобнее использовать вероятность того, что СВ Х<хi, где хi- текущее значение переменной. Эта вероятность называется интегральной функцией распределения: P(X<xi)=F(x).
Интегральная функция является универсальным способом задания СВ (как для ДСВ, так и для НСВ).
Свойства интегральной функции распределения:
1) F(x) не убывает (если х2>x1, то F(x2)?Р(х1));
2). F(-?)=0;
3). F(+?)=1;
4) вероятность попадания СВ X в интервал а<Х<b определяется по формуле
P(a?X<b)=F(b)-F(a).
Замечание. Обычно для определённости левую границу включают в интервал, а правую нет. Вообще для НСВ верно, что
Р(а?Х<b)= Р(а <Х?b) =Р(а<Х < b)= Р(а?X?b).
Основные теоремы теории вероятностей
Теорема1.
Вероятность суммы двух несовместных событий А и В равна сумме их вероятностей:
Р(А+В)=Р(А)+Р(В).
Следствие1.
Если А1,А2, …, Аn - попарно несовместные события, то вероятность их суммы равна сумме вероятностей этих событий.
Следствие2.
Вероятность суммы попарно несовместных событий А1,А2, …, Аn , образующих полную группу, равна 1.
Следствие3.
События А и А несовместны и образуют полную группу событий, поэтому
Р(А +А) = Р(А) + Р(А) = 1. Отсюда Р (А) = 1 - Р(А).
Теорема2.
Вероятность суммы двух совместных событий А и В равна сумме вероятностей этих событий без вероятности их произведения:
Р (А+В) = Р(А)+Р(В) - Р (А*В).
Два события А и В называются независимыми, если появление одного из них не влияет на вероятность появления другого (в противном случае события зависимы).
Теорема3.
Вероятность произведения двух независимых событий равна произведению их вероятностей Р(А*В)=Р(А)*Р(В).
Следствие.
Вероятность произведения n независимых событий А1,А2, …, Аn равна произведению их вероятностей.
Условной вероятностью события В при условии, что событие А уже произошло, называется число Р(АВ)/Р(А)=Р(В/А)РА(В).
Теорема4.
Вероятность произведения двух зависимых событий А и В равна произведению вероятности наступления события А на условную вероятность события В при условии что событие А уже произошло:
Р(А*В) =Р(А)*Р(В/А).
Следствие.
Если события А и В независимы, то из теоремы 4 следует теорема 3.
Событие В не зависит от события А, если Р(В/А) = Р(В). Теорему 4 можно обобщить на n событий.
Теорема5.
Вероятность произведения n зависимых событий А1,А2, …, Аn равна произведению последовательных условных вероятностей:
Р(А1*А2*…*Аn-1*An)= P(A1)*P(A2/A1)*...*P(An/A1*A2*...*An-1).
Теорема6.
Вероятность наступления хотя бы одного из событий А1,А2, …, Аn равна разности между единицей и вероятностью произведении отрицаний событий А1,А2, …, Аn :
Р(А)=1-Р(А1*А2*…*Аn)=1- P(A1)*P(A2/A1)*...*P(An/A1*A2*...*An-1).
Следствие1.
Вероятность наступления хотя бы одного из событий А1,А2, …, Аn независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий:
Р(А)=1-Р(А1)Р(А2)…Р(Аn).
Следствие2.
Если события А1,А2, …, Аn независимы и имеют одинаковую вероятность появиться (Р(А1)=Р(А2)=…Р(Аn)= р, Р(Аi)= 1-р=q ), то вероятность появления хотя бы одного из них равна Р(А)=1-qn .