Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow О теории вероятностей

Понятие корреляционной зависимости

При изучении случайных величин в общем случае необходимо рассматривать стохастическую зависимость, когда каждому значению СВ Х может соответствовать одно и более значений СВ Y, причем до опыта нельзя предсказать возможное соответствие. В случае стохастической связи изменение CВY, вследствие изменения СВ Х, можно разбить на 2 компоненты: 1. функциональную, связанную с зависимостью Y от Х, 2. случайную, связанную со случайным характером самих СВ Х и Y. Соотношение м/у функциональной и случайной компонентой определяет силу связи. Отсутствие первой компоненты указывает на независимость СВ Х и Y, отсутствие второй компоненты показывает, что м/у CВ X и Y существует функциональная связь.

Важным частным случаем стохастической зависимость является корреляционная. Корреляционная зависимость м/у переменными величинами - это та функциональная зависимость, которая существует м/у значениями одной из них и групповыми средними другой. (Корреляционные зависимости Y на Х и Х на Y обычно не совпадают). Корреляционная связь чаще всего характеризуется выборочным коэффициентом корреляции r, который характеризует степень линейной функциональной зависимости м/у CB X и Y. Для двух СВ Х и Y коэффициент корреляции имеет => св-ва:

1. -1?r?1;

2. если r=+ 1, то м/у СВ Х и Y существует функциональная линейная зависимость;

3. если r=0, то СВ Х и Y некоррелированны, что не означает независимости вообще;

4. если Х и Y образуют систему нормально распределенных СВ, то из их некоррелированности => их независимость.

Коэффициенты корреляции Y на Х и Х на Y совпадают.

Корреляция используется для количественной оценки взаимосвязи двух наборов данных с помощью коэффициента корреляции. Коэффициент корреляции выборки представляет собой ковариацию двух наборов данных, деленную на произведение их стандартных отклонений.

Критерий согласия

Проверка гипотезы о предполагаемом законе неизвестного распределения производится так же, как и проверка гипотезы о параметрах распределения, т. е. при помощи специально подобранной случайной величины -- критерия согласия.

Критерием согласия называют критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Имеется несколько критериев согласия: ч2 («хи квадрат») К. Пирсона, Колмогорова, Смирнова и др.

Ограничимся описанием применения критерия Пирсона к проверке гипотезы о нормальном распределении генеральной совокупности (критерий аналогично применяется и для других распределений, в этом состоит его достоинство). С этой целью будем сравнивать эмпирические (наблюдаемые) и теоретические (вычисленные в предположении нормального распределения) частоты. Обычно эмпирические и теоретические частоты различаются.

Случайно ли расхождение частот? Возможно, что расхождение случайно и объясняется малым числом; наблюдений, либо способом их группировки, либо другими причинами. Возможно, что расхождение частот неслучайно (значимо) и объясняется тем, что теоретические частоты вычислены, исходя из неверной гипотезы о нормальном распределении генеральной совокупности. Критерий Пирсона отвечает на поставленный выше вопрос. Правда, как и любой критерий, он не доказывает справедливость гипотезы, а лишь устанавливает, на принятом уровне значимости, ее согласие или несогласие с данными наблюдений.

Итак, пусть по выборке объема п получено эмпирическое распределение:

варианты xl, x1, x2 ... xs,

эмп. частоты ni n1 п2 ... ns.

Допустим, что в предположении нормального распределения генеральной совокупности, вычислены теоретические частоты п. При уровне значимости б, требуется проверить нулевую гипотезу; генеральная совокупность распределена нормально.

В качестве критерия проверки нулевой гипотезы примем случайную величину

(*)

Эта величина случайная, так как в различных опытах она принимает различные, заранее неизвестные значения. Ясно, что чем меньше различаются эмпирические и теоретические частоты, тем меньше величина критерия (*) и, следовательно, он в известной степени характеризует близость эмпирического и теоретического распределений.

Заметим, что возведением в квадрат разностей частот устраняют возможность взаимного погашения положительных и отрицательных разностей. Делением на n'i достигают уменьшения каждого из слагаемых; в противном случае сумма была бы настолько велика, что приводила бы к отклонению нулевой гипотезы даже и тогда, когда она справедлива. Разумеется, приведенные соображения не являются обоснованием выбранного критерия, а лишь пояснением.

Доказано, что при n>? закон распределения случайной величины (*), независимо от того, какому закону распределения подчинена генеральная совокупность, стремится к закону распределения ч2 с k степенями свободы. Поэтому случайная величина (*) обозначена через ч2, а сам критерий называют критерием согласия «хи квадрат».

Число степеней свободы находят по равенству

k=s-1-r

где s -- число групп выборки; r -- число параметров предполагаемого распределения, которые оценены по данным выборки.

В частности, если предполагаемое распределение -- нормальное, то оценивают два параметра (математическое ожидание и среднее квадратическое отклонение) поэтому r=2 и число степеней свободы

k=s-1-r=s-1-2-s-3.

Если, например, предполагают, что генеральная совокупность распределена по закону Пуассона, то оценивают один параметр X, поэтому r=1 и k=s-2.

Поскольку односторонний критерий более «жестко» отвергает нулевую гипотезу, чем двусторонний, построим правостороннюю критическую область, исходя из требования, чтобы вероятность попадания критерия в эту область, в предположении справедливости нулевой гипотезы, была равна принятому уровню значимости б:

Т.о., правосторонняя критическая область определяется неравенством

а область принятия нулевой гипотезы -- неравенством

Обозначим значение критерия, вычисленное по данным наблюдений, через ч2набл и сформулируем правило проверки нулевой гипотезы.

Правило. Для того чтобы, при заданном уровне значимости, проверить нулевую гипотезу H0: генеральная совокупность распределена нормально, надо сначала вычислить теоретические частоты, а затем наблюдаемое значение критерия

(**)

и по таблице критических точек распределения ч2, по заданному уровню значимости б, и числу степеней свободы k=s-3, найти критическую точку ч2 (б; k).

Если ч2набл2кр - нет оснований отвергнуть нулевую гипотезу.

Если ч2набл 2кр -- нулевую гипотезу отвергают.

Замечание 1. Объем выборки должен быть достаточно велик, во всяком случае не менее 50. Каждая группа должна содержать не менее 5--8 вариант; малочисленные группы следует объединять в одну, суммируя частоты.

Замечание 2. Поскольку возможны ошибки первого и второго рода, в особенности, если согласование теоретических и эмпирических частот «слишком хорошее», следует проявлять осторожность.

Замечание 3. В целях контроля вычислений, формулу (**) преобразуют к виду

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее