Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow О теории вероятностей

Особенности статистического анализа количественных и качественных показателей

Методы шкалирования при обработке качественных признаков.

Основной задачей статистического анализа является оценка связи признаков м/у собой. Необходимо измерить признаки, в гуманитарных исследованиях более сложны, т.к. они касаются измерения не только количественных, но и качественных признаков.

Суть статистических методов - анализ чисел как таковых, а не истинных значений некоторого признака.

Если количественные показатели можно, то для качественных показателей можно экспертным путем оценить степень сходства или различия м/у парами объектов.

Объекты отражают в некотором многомерном пространстве, где каждая точка - это объект, а координаты - признаки.

Для этого используют методы многомерного шкалирования.

- матрица парных расстояний (количественный признак)

- матрица парных отклонений (качественный признак)

По матрицам изучается степень сходства и различия.

Неравенство Чебышева

Рассмотрим закон больших чисел в форме Чебышева.

Лемма Чебышева (Маркова). Если случайная величина X принимает только неотрицательные значения и имеет математическое ожидание М(Х), то для любого б>0 имеет место неравенство: P(X?б)?(M(X))/б.

Неравенство Чебышева. Если случайная величина X имеет математическое ожидание М(Х) и дисперсию D(X), то для любого е>0 имеет место неравенство:

Неравенство Чебышева является в теории вероятностей общим фактом и позволяет оценить нижнюю границу вероятности.

Теорема. Закон больших чисел Чебышева. Пусть Х1, Х2, .. .,Хn - последовательность попарно независимых случайных величин, имеющих конечные математические ожидания и дисперсии, ограниченные сверху постоянной С = const (D(Xi)?C(i=l, 2,...,n)). Тогда для любого е>0,

Теорема показывает, что среднее арифметическое большого числа случайных величин с вероятностью сколь угодно близкой к 1 будет мало отклоняться от среднего арифметического математических ожиданий.

Следствие 1. Если вероятность наступления события А в каждом из n независимых испытаний равна р, m - число наступлений события А в серии из n независимых испытаний, то, каково бы ни было число е > 0, имеет место предел:

Таким образом устанавливается связь между относительной частотой появления события А и постоянной вероятностью р в серии из n независимых испытаний.

Следствие 2. Теорема Пуассона. Если в последовательности независимых испытаний вероятность появления события А в к-ом испытании равна р, то

где m - число появлений события А в серии из n испытаний.

Следствие 3. Теорема Бернулли. Если X1, Х2,.. .,Хn - последовательность независимых случайных величин таких, что

М(Х1) = М(Х2)=...= М(Хn) = а, D(Х1)< С, D(X2) < С,.. .,D(Xn)< С, где С = const

то, каково бы ни было постоянное число е>0, имеет место предел:

Этот частный случай закона больших чисел позволяет обосновать правило средней арифметической.

Законы больших чисел не позволяют уменьшить неопределённость в каждом конкретном случае, они утверждают лишь о существовании закономерности при достаточно большом числе опытов. Например, если при подбрасывании монеты 10 раз появился герб, то это не означает, что в 11 раз появится цифра.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее