Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow О теории вероятностей

Математическое ожидание

Математическим ожиданием М(Х) ДСВ X называется среднее значение случайной величины:

Или иначе, М(Х) - это сумма парных произведений случайной величины на соответствующую вероятность:

Мода Мо(Х) распределения - это значение СВ, имеющее наиболее вероятное значение.

Медиана Ме(Х) - это значение случайной величины, которое делит таблицу распределения на две части таким образом, что вероятность попадания в одну из них равна 0,5. Медиана обычно не определяется для ДСВ.

Свойства математического ожидания:

1) М(С)=С, где С=const;

2)М(СХ) = СМ(Х);

3) M(X±Y) = М(Х) ± M(Y);

4) Если случайные величины X и Y, независимы, то M(XY) = M(X)*M(Y).

Для биномиального распределения М(Х)=nр;

для геометрического распределения М(Х)= 1/р;

для распределения Пуассона М(Х)=л;

для гипергеометрического распределения М(Х) = n(M/N).

Дисперсия ДСВ и ее свойства

Математическое ожидание квадрата отклонения СВ от ее математического ожидания:

D(X) = M(x-M(X)2) = =(х1-М(Х))2р1+(х2-М(Х))2р2+....+(xn-М(Х))2рn .(2.3.2)

Свойства дисперсии:

1) D(С) = 0, где С=соnst;

2) D(CX)=C2D(X);

3) D(X)=M(X2)-(M(X))2, где М(Х2) = х21 р1 + x22 p2 + ...+ х2n рn;

4) Если СВ X и Y независимы, то D(X±Y)=D(X) + D(Y);

5) D(OX)=D(X);

6) Для любых СВ X и Y, D(X±Y)=D(X)+D(Y)±2cov(X,Y), где cov(X,Y)=M((X-mx)(Y-m )) - ковариация случайных величин X и Y (М(Х)= mx, M(Y)= m).

Дисперсия характеризует средний квадрат отклонения ДСВ, поэтому на практике часто используют в качестве характеристики разброса среднее квадратическое отклонение у(Х)= vD(X) , которое имеет ту же размерность, что и СВ X.

Для биноминального закона

D(X)=npq, у(X)=vnpq;

для геометрического закона D(X)= q/p2;

для гипергеометрического D(X)=n(M/N)(1-M/N)(N-n)/(N-1);

для распределения Пуассона D(X)=л.

Только для распределения Пуассона M(X)=D(X)= л.

Показательное распределение.

НСВ X, принимающая неотрицательные значения, имеет показательное распределение, если ее дифференциальная функция имеет вид

где Я =const, Я >0.

Интегральная функция показательного закона с параметром л:

Показательный закон

Рис. Показательный закон

Если СВ X распределена по показательному закону, то:

1. Математическое ожидание М(Х) = 1/л ;

2. Дисперсия D(X)=1/л2, среднее квадратическое отклонение

у(X)=vD=1/л.

3. Вероятность попадания СВ X в заданный интервал определяется по формуле

Р(а?х<b) = е-ла-лb.

Замечание. Показательное распределение играет большую роль в теории массового обслуживания (ТМО), теории надежности. В ТМО параметр X - среднее число событий, приходящихся на единицу времени. При определенных условиях число событий, произошедших за промежуток времени т, распределено по закону Пуассона с математическим ожиданием а =лф. Длина промежутка t, между произвольными двумя соседними событиями, подчиняется показательному закону: P(T<t)=F(t)=l-eлt.

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее