Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow Основы теории вероятности и математической статистики

Виды ошибок

Ошибки первого рода (англ. type I errors, б errors, false positives) и ошибки второго рода (англ. type II errors, в errors, false negatives) в математической статистике -- это ключевые понятия задач проверки статистических гипотез. Тем не менее, данные понятия часто используются и в других областях, когда речь идёт о принятии «бинарного» решения (да/нет) на основе некоего критерия (теста, проверки, измерения), который с некоторой вероятностью может давать ложный результат.

Определения

Пусть дана выборка из неизвестного совместного распределения PX, и поставлена бинарная задача проверки статистических гипотез:

H0, H1 где H0 -- нулевая гипотеза, а H1 -- альтернативная гипотеза. Предположим, что задан статистический критерий , сопоставляющий каждой реализации выборки X=xодну из имеющихся гипотез. Тогда возможны следующие четыре ситуации:

Распределение PX выборки X соответствует гипотезе H0, и она точно определена статистическим критерием, то есть f(x)=Ho.

Распределение PXвыборки соответствует гипотезе H0, но она неверно отвергнута статистическим критерием, то есть f(x)=H1.

Распределение PXвыборки Xсоответствует гипотезе H1, и она точно определена статистическим критерием, то есть f(x)=H1.

Распределение Pxвыборки Xсоответствует гипотезе H1, но она неверно отвергнута статистическим критерием, то есть f(x)=H0.

Во втором и четвертом случае говорят, что произошла статистическая ошибка, и её называют ошибкой первого и второго рода соответственно.

Вероятности ошибок (уровень значимости и мощность)

Вероятность ошибки первого рода при проверке статистических гипотез называют уровнем значимости и обычно обозначают греческой буквой б (отсюда название б-errors).

Вероятность ошибки второго рода не имеет какого-то особого общепринятого названия, на письме обозначается греческой буквой в (отсюда в-errors). Однако с этой величиной тесно связана другая, имеющая большое статистическое значение -- мощность критерия. Она вычисляется по формуле (1 ? в). Таким образом, чем выше мощность, тем меньше вероятность совершить ошибку второго рода.

Обе эти характеристики обычно вычисляются с помощью так называемой функции мощности критерия. В частности, вероятность ошибки первого рода есть функция мощности, вычисленная при нулевой гипотезе. Для критериев, основанных на выборке фиксированного объема, вероятность ошибки второго рода есть единица минус функция мощности, вычисленная в предположении, что распределение наблюдений соответствует альтернативной гипотезе. Для последовательных критериев это также верно, если критерий останавливается с вероятностью единица (при данном распределении из альтернативы).

В статистических тестах обычно приходится идти на компромисс между приемлемым уровнем ошибок первого и второго рода. Зачастую для принятия решения используется пороговое значение, которое может варьироваться с целью сделать тест более строгим или, наоборот, более мягким. Этим пороговым значением является уровень значимости, которым задаются при проверке статистических гипотез. Например, в случае металлодетектора повышение чувствительности прибора приведёт к увеличению риска ошибки первого рода (ложная тревога), а понижение чувствительности -- к увеличению риска ошибки второго рода (пропуск запрещённого предмета).

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Региональная экономика
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее