Виды ошибок

Ошибки первого рода (англ. type I errors, б errors, false positives) и ошибки второго рода (англ. type II errors, в errors, false negatives) в математической статистике -- это ключевые понятия задач проверки статистических гипотез. Тем не менее, данные понятия часто используются и в других областях, когда речь идёт о принятии «бинарного» решения (да/нет) на основе некоего критерия (теста, проверки, измерения), который с некоторой вероятностью может давать ложный результат.

Определения

Пусть дана выборка из неизвестного совместного распределения PX, и поставлена бинарная задача проверки статистических гипотез:

H0, H1 где H0 -- нулевая гипотеза, а H1 -- альтернативная гипотеза. Предположим, что задан статистический критерий , сопоставляющий каждой реализации выборки X=xодну из имеющихся гипотез. Тогда возможны следующие четыре ситуации:

Распределение PX выборки X соответствует гипотезе H0, и она точно определена статистическим критерием, то есть f(x)=Ho.

Распределение PXвыборки соответствует гипотезе H0, но она неверно отвергнута статистическим критерием, то есть f(x)=H1.

Распределение PXвыборки Xсоответствует гипотезе H1, и она точно определена статистическим критерием, то есть f(x)=H1.

Распределение Pxвыборки Xсоответствует гипотезе H1, но она неверно отвергнута статистическим критерием, то есть f(x)=H0.

Во втором и четвертом случае говорят, что произошла статистическая ошибка, и её называют ошибкой первого и второго рода соответственно.

Вероятности ошибок (уровень значимости и мощность)

Вероятность ошибки первого рода при проверке статистических гипотез называют уровнем значимости и обычно обозначают греческой буквой б (отсюда название б-errors).

Вероятность ошибки второго рода не имеет какого-то особого общепринятого названия, на письме обозначается греческой буквой в (отсюда в-errors). Однако с этой величиной тесно связана другая, имеющая большое статистическое значение -- мощность критерия. Она вычисляется по формуле (1 ? в). Таким образом, чем выше мощность, тем меньше вероятность совершить ошибку второго рода.

Обе эти характеристики обычно вычисляются с помощью так называемой функции мощности критерия. В частности, вероятность ошибки первого рода есть функция мощности, вычисленная при нулевой гипотезе. Для критериев, основанных на выборке фиксированного объема, вероятность ошибки второго рода есть единица минус функция мощности, вычисленная в предположении, что распределение наблюдений соответствует альтернативной гипотезе. Для последовательных критериев это также верно, если критерий останавливается с вероятностью единица (при данном распределении из альтернативы).

В статистических тестах обычно приходится идти на компромисс между приемлемым уровнем ошибок первого и второго рода. Зачастую для принятия решения используется пороговое значение, которое может варьироваться с целью сделать тест более строгим или, наоборот, более мягким. Этим пороговым значением является уровень значимости, которым задаются при проверке статистических гипотез. Например, в случае металлодетектора повышение чувствительности прибора приведёт к увеличению риска ошибки первого рода (ложная тревога), а понижение чувствительности -- к увеличению риска ошибки второго рода (пропуск запрещённого предмета).

 
< Пред   СОДЕРЖАНИЕ   Скачать   След >